# Finding the Frobenius Norm of a given matrix

Given an M * N matrix, the task is to find the Frobenius Norm of the matrix. The Frobenius Norm of a matrix is defined as the square root of the sum of the squares of the elements of the matrix.

Example:

Input: mat[][] = {{1, 2}, {3, 4}}
Output: 5.47723
sqrt(12 + 22 + 32 + 42) = sqrt(30) = 5.47723

Input: mat[][] = {{1, 4, 6}, {7, 9, 10}}
Output: 16.8226

Approach: Find the sum of squares of the elements of the matrix and then print the square root of the calculated value.

Below is the implementation of the above approach:

## CPP

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `const` `int` `row = 2, col = 2; ` ` `  `// Function to return the Frobenius ` `// Norm of the given matrix ` `float` `frobeniusNorm(``int` `mat[row][col]) ` `{ ` ` `  `    ``// To store the sum of squares of the ` `    ``// elements of the given matrix ` `    ``int` `sumSq = 0; ` `    ``for` `(``int` `i = 0; i < row; i++) { ` `        ``for` `(``int` `j = 0; j < col; j++) { ` `            ``sumSq += ``pow``(mat[i][j], 2); ` `        ``} ` `    ``} ` ` `  `    ``// Return the square root of ` `    ``// the sum of squares ` `    ``float` `res = ``sqrt``(sumSq); ` `    ``return` `res; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `mat[row][col] = { { 1, 2 }, { 3, 4 } }; ` ` `  `    ``cout << frobeniusNorm(mat); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `class` `GFG ` `{ ` `     `  `    ``final` `static` `int` `row = ``2``, col = ``2``;  ` `     `  `    ``// Function to return the Frobenius  ` `    ``// Norm of the given matrix  ` `    ``static` `float` `frobeniusNorm(``int` `mat[][])  ` `    ``{  ` `     `  `        ``// To store the sum of squares of the  ` `        ``// elements of the given matrix  ` `        ``int` `sumSq = ``0``;  ` `        ``for` `(``int` `i = ``0``; i < row; i++)  ` `        ``{  ` `            ``for` `(``int` `j = ``0``; j < col; j++)  ` `            ``{  ` `                ``sumSq += (``int``)Math.pow(mat[i][j], ``2``);  ` `            ``}  ` `        ``}  ` `     `  `        ``// Return the square root of  ` `        ``// the sum of squares  ` `        ``float` `res = (``float``)Math.sqrt(sumSq);  ` `        ``return` `res;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args) ` `    ``{  ` `        ``int` `mat[][] = { { ``1``, ``2` `}, { ``3``, ``4` `} };  ` `     `  `        ``System.out.println(frobeniusNorm(mat));  ` `     `  `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the approach ` `from` `math ``import` `sqrt ` `row ``=` `2` `col ``=` `2` ` `  `# Function to return the Frobenius ` `# Norm of the given matrix ` `def` `frobeniusNorm(mat): ` ` `  `    ``# To store the sum of squares of the ` `    ``# elements of the given matrix ` `    ``sumSq ``=` `0` `    ``for` `i ``in` `range``(row): ` `        ``for` `j ``in` `range``(col): ` `            ``sumSq ``+``=` `pow``(mat[i][j], ``2``) ` ` `  `    ``# Return the square root of ` `    ``# the sum of squares ` `    ``res ``=` `sqrt(sumSq) ` `    ``return` `round``(res, ``5``) ` ` `  `# Driver code ` ` `  `mat ``=` `[ [ ``1``, ``2` `], [ ``3``, ``4` `] ] ` ` `  `print``(frobeniusNorm(mat)) ` ` `  `# This code is contributed by mohit kumar 29 `

## C#

 `// C# implementation of the approach  ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``static` `int` `row = 2, col = 2;  ` `     `  `    ``// Function to return the Frobenius  ` `    ``// Norm of the given matrix  ` `    ``static` `float` `frobeniusNorm(``int` `[,]mat)  ` `    ``{  ` `     `  `        ``// To store the sum of squares of the  ` `        ``// elements of the given matrix  ` `        ``int` `sumSq = 0;  ` `        ``for` `(``int` `i = 0; i < row; i++)  ` `        ``{  ` `            ``for` `(``int` `j = 0; j < col; j++)  ` `            ``{  ` `                ``sumSq += (``int``)Math.Pow(mat[i, j], 2);  ` `            ``}  ` `        ``}  ` `     `  `        ``// Return the square root of  ` `        ``// the sum of squares  ` `        ``float` `res = (``float``)Math.Sqrt(sumSq);  ` `        ``return` `res;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main () ` `    ``{  ` `        ``int` `[,]mat = { { 1, 2 }, { 3, 4 } };  ` `     `  `        ``Console.WriteLine(frobeniusNorm(mat));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```5.47723
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : mohit kumar 29, AnkitRai01