# Finding n-th term of series 3, 13, 42, 108, 235…

Given a number n, find the n-th term in the series 3, 13, 42, 108, 235…

Examples:

```Input : 3
Output : 42

Input : 4
Output : 108
```

Constraints:
1 <= T <= 100
1 <= N <= 100

Naive Approach :
The series basically represents sums of natural numbers cube and number of terms multiplied by 2. The first term is the sum of the single number. The second term is the sum of two numbers, and so on.

Examples:

```n = 2
2nd term equals to sum of 1st term and 8 i.e
A2 = A1 + 23 + n*2
= 1 + 8 + 4
= 13

Similarly,
A3 = A2 + 33 + n*2
= 9 + 27 + 6
= 42 and so on..
```

A simple solution is to add the first n natural numbers cube and number of terms multiplied by 2.

## C++

 `// C++ program to find n-th term of  ` `// series 3, 13, 42, 108, 235… ` `#include ` `using` `namespace` `std; ` ` `  `// Function to generate a fixed number ` `int` `magicOfSequence(``int` `N) ` `{ ` `    ``int` `sum = 0; ` `    ``for` `(``int` `i = 1; i <= N; i++)  ` `        ``sum += (i*i*i + i*2); ` `    ``return` `sum;     ` `} ` ` `  `// Driver Method ` `int` `main() ` `{ ` `    ``int` `N = 4; ` `    ``cout << magicOfSequence(N) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java Program to Finding n-th term ` `// of series 3, 13, 42, 108, 235 ... ` ` `  `class` `GFG { ` ` `  `// Function to generate ` `// a fixed number ` `public` `static` `int` `magicOfSequence(``int` `N) ` `{ ` `    ``int` `sum = ``0``; ` `    ``for` `(``int` `i = ``1``; i <= N; i++)  ` `        ``sum += (i * i * i + i * ``2``); ` `    ``return` `sum;  ` `} ` ` `  `// Driver Method ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `N = ``4``; ` `    ``System.out.println(magicOfSequence(N)); ` `} ` `} ` ` `  `// This code is contributed by Jaideep Pyne `

## Python3

 `# Python3 program to ` `# find n-th term of  ` `# series 3, 13, 42, 108, 235… ` ` `  `# Function to generate ` `# a fixed number ` `def` `magicOfSequence(N) : ` ` `  `    ``sum` `=` `0` `    ``for` `i ``in` `range``(``1``, N ``+` `1``) : ` `        ``sum` `+``=` `(i ``*` `i ``*` `i ``+` `i ``*` `2``) ` `    ``return` `sum``;  ` ` `  `# Driver Code ` `N ``=` `4` `print``(magicOfSequence(N)) ` ` `  `# This code is contributed by vij. `

## C#

 `// C# Program to Finding  ` `// n-th term of series  ` `// 3, 13, 42, 108, 235 ... ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to generate ` `// a fixed number ` `public` `static` `int` `magicOfSequence(``int` `N) ` `{ ` `    ``int` `sum = 0; ` `    ``for` `(``int` `i = 1; i <= N; i++)  ` `        ``sum += (i * i * i + i * 2); ` `    ``return` `sum;  ` `} ` ` `  `// Driver Code ` `static` `public` `void` `Main () ` `{ ` `    ``int` `N = 4; ` `    ``Console.WriteLine(magicOfSequence(N)); ` `} ` `} ` ` `  `// This code is contributed ` `// by ajit `

## PHP

 ` `

Output:

```120
```

Time Complexity of this solution is O(n).

Efficient approach :
We know sum of cubes of first n natural numbers is (n*(n+1)/2)2. We also know that if we multiply i-th term by 2 and add all, we get sum of n terms as 2*n.

So our result is (n*(n+1)/2)2 + 2*n.

Example :

For n = 4 sum by the formula is
(4 * (4 + 1 ) / 2)) ^ 2 + 2*4
= (4 * 5 / 2) ^ 2 + 8
= (10) ^ 2 + 8
= 100 + 8
= 108

For n = 6, sum by the formula is
(6 * (6 + 1 ) / 2)) ^ 2 + 2*6
= (6 * 7 / 2) ^ 2 + 12
= (21) ^ 2 + 12
= 441 + 12
= 453

## C++

 `// A formula based C++ program to find sum ` `// of series with cubes of first n natural ` `// numbers ` `#include ` `using` `namespace` `std; ` ` `  `int` `magicOfSequence(``int` `N) ` `{ ` `    ``return` `(N * (N + 1) / 2) + 2 * N; ` `} ` ` `  `// Driver Function ` `int` `main() ` `{ ` `    ``int` `N = 6; ` `    ``cout << magicOfSequence(N); ` `    ``return` `0; ` `} `

## Java

 `// A formula based Java program to find sum ` `// of series with cubes of first n natural ` `// numbers ` `class` `GFG { ` `     `  `    ``static` `int` `magicOfSequence(``int` `N) ` `    ``{ ` `        ``return` `(N * (N + ``1``) / ``2``) + ``2` `* N; ` `    ``} ` `     `  `    ``// Driver Function ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `N = ``6``; ` `        ``System.out.println(magicOfSequence(N)); ` `    ``} ` `} ` ` `  `// This code is contributed by Smitha. `

## Python 3

 `# A formula based Python program to find sum ` `# of series with cubes of first n natural ` `# numbers ` `def` `magicOfSequence(N): ` ` `  `    ``return` `(N ``*` `(N ``+` `1``) ``/` `2``) ``+` `2` `*` `N ` ` `  `# Driver Function ` `N ``=` `6` `print``(``int``(magicOfSequence(N))) ` ` `  `# This code is contributed by Smitha. `

## C#

 `// A formula based C# program to find sum ` `// of series with cubes of first n natural ` `// numbers ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``static` `int` `magicOfSequence(``int` `N) ` `    ``{ ` `        ``return` `(N * (N + 1) / 2) + 2 * N; ` `    ``} ` `     `  `    ``// Driver Function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `N = 6; ` `        ``Console.Write(magicOfSequence(N)); ` `    ``} ` `} ` ` `  `// This code is contributed by Smitha. `

## PHP

 ` `

Output:

```33
```

Time Complexity: O(1)

My Personal Notes arrow_drop_up

Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.