Finding n-th term of series 3, 13, 42, 108, 235…

Given a number n, find the n-th term in the series 3, 13, 42, 108, 235…

Examples:

Input : 3
Output : 42

Input : 4
Output : 108

Constraints:
1 <= T <= 100
1 <= N <= 100



Naive Approach :
The series basically represents sums of natural numbers cube and number of terms multiplied by 2. The first term is the sum of the single number. The second term is the sum of two numbers, and so on.

Examples:

n = 2
2nd term equals to sum of 1st term and 8 i.e
A2 = A1 + 23 + n*2
   = 1 + 8 + 4
   = 13

Similarly,
A3 = A2 + 33 + n*2
   = 9 + 27 + 6
   = 42 and so on..

A simple solution is to add the first n natural numbers cube and number of terms multiplied by 2.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find n-th term of 
// series 3, 13, 42, 108, 235…
#include <bits/stdc++.h>
using namespace std;
  
// Function to generate a fixed number
int magicOfSequence(int N)
{
    int sum = 0;
    for (int i = 1; i <= N; i++) 
        sum += (i*i*i + i*2);
    return sum;    
}
  
// Driver Method
int main()
{
    int N = 4;
    cout << magicOfSequence(N) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to Finding n-th term
// of series 3, 13, 42, 108, 235 ...
  
class GFG {
  
// Function to generate
// a fixed number
public static int magicOfSequence(int N)
{
    int sum = 0;
    for (int i = 1; i <= N; i++) 
        sum += (i * i * i + i * 2);
    return sum; 
}
  
// Driver Method
public static void main(String args[])
{
    int N = 4;
    System.out.println(magicOfSequence(N));
}
}
  
// This code is contributed by Jaideep Pyne

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to
# find n-th term of 
# series 3, 13, 42, 108, 235…
  
# Function to generate
# a fixed number
def magicOfSequence(N) :
  
    sum = 0
    for i in range(1, N + 1) :
        sum += (i * i * i + i * 2)
    return sum
  
# Driver Code
N = 4
print(magicOfSequence(N))
  
# This code is contributed by vij.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to Finding 
// n-th term of series 
// 3, 13, 42, 108, 235 ...
using System;
  
class GFG
{
      
// Function to generate
// a fixed number
public static int magicOfSequence(int N)
{
    int sum = 0;
    for (int i = 1; i <= N; i++) 
        sum += (i * i * i + i * 2);
    return sum; 
}
  
// Driver Code
static public void Main ()
{
    int N = 4;
    Console.WriteLine(magicOfSequence(N));
}
}
  
// This code is contributed
// by ajit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP  program to find n-th term of 
// series 3, 13, 42, 108, 235…
  
// Function to generate a fixed number
  
function magicOfSequence($N)
{
    $sum = 0;
    for ($i = 1; $i <= $N; $i++) 
        $sum += ($i*$i*$i + $i*2);
    return $sum
}
  
// Driver Method
  
    $N = 4;
    echo  magicOfSequence($N);
  
  
// This code is contributed by m_kit    
?>

chevron_right


Output:

120

Time Complexity of this solution is O(n).

Efficient approach :
We know sum of cubes of first n natural numbers is (n*(n+1)/2)2. We also know that if we multiply i-th term by 2 and add all, we get sum of n terms as 2*n.

So our result is (n*(n+1)/2)2 + 2*n.

Example :

For n = 4 sum by the formula is
(4 * (4 + 1 ) / 2)) ^ 2 + 2*4
= (4 * 5 / 2) ^ 2 + 8
= (10) ^ 2 + 8
= 100 + 8
= 108

For n = 6, sum by the formula is
(6 * (6 + 1 ) / 2)) ^ 2 + 2*6
= (6 * 7 / 2) ^ 2 + 12
= (21) ^ 2 + 12
= 441 + 12
= 453

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// A formula based C++ program to find sum
// of series with cubes of first n natural
// numbers
#include <iostream>
using namespace std;
  
int magicOfSequence(int N)
{
    return (N * (N + 1) / 2) + 2 * N;
}
  
// Driver Function
int main()
{
    int N = 6;
    cout << magicOfSequence(N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// A formula based Java program to find sum
// of series with cubes of first n natural
// numbers
class GFG {
      
    static int magicOfSequence(int N)
    {
        return (N * (N + 1) / 2) + 2 * N;
    }
      
    // Driver Function
    public static void main(String[] args)
    {
        int N = 6;
        System.out.println(magicOfSequence(N));
    }
}
  
// This code is contributed by Smitha.

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# A formula based Python program to find sum
# of series with cubes of first n natural
# numbers
def magicOfSequence(N):
  
    return (N * (N + 1) / 2) + 2 * N
  
# Driver Function
N = 6
print(int(magicOfSequence(N)))
  
# This code is contributed by Smitha.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// A formula based C# program to find sum
// of series with cubes of first n natural
// numbers
using System;
  
class GFG {
      
    static int magicOfSequence(int N)
    {
        return (N * (N + 1) / 2) + 2 * N;
    }
      
    // Driver Function
    public static void Main()
    {
        int N = 6;
        Console.Write(magicOfSequence(N));
    }
}
  
// This code is contributed by Smitha.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// A formula based PHP program 
// to find sum of series with 
// cubes of first n natural numbers
function magicOfSequence($N)
{
    return ($N * ($N + 1) / 2) + 2 * $N;
}
  
// Driver Code
$N = 6;
echo magicOfSequence($N) . "\n";
  
// This code is contributed by mits
?>

chevron_right


Output:

33

Time Complexity: O(1)



My Personal Notes arrow_drop_up

Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.