Finding LCM of more than two (or array) numbers without using GCD

Given an array of positive integers, find LCM of the elements present in array.

Examples:

Input : arr[] = {1, 2, 3, 4, 28}
Output : 84

Input  : arr[] = {4, 6, 12, 24, 30}
Output : 120



We have discussed LCM of array using GCD.

In this post a different approach is discussed that doesn’t require computation of GCD. Below are steps.

  1. Initialize result = 1
  2. Find a common factors of two or more array elements.
  3. Multiply the result by common factor and divide all the array elements by this common factor.
  4. Repeat steps 2 and 3 while there is a common factor of two or more elements.
  5. Multiply the result by reduced (or divided) array elements.

Illustration :

Let we have to find the LCM of 
arr[] = {1, 2, 3, 4, 28}

We initialize result = 1.

2 is a common factor that appears in
two or more elements. We divide all
multiples by two and multiply result
with 2.
arr[] = {1, 1, 3, 2, 14}
result = 2

2 is again a common factor that appears 
in two or more elements. We divide all
multiples by two and multiply result
with 2.
arr[] = {1, 1, 3, 1, 7}
result = 4

Now there is no common factor that appears
in two or more array elements. We multiply
all modified array elements with result, we
get.
result = 4 * 1 * 1 * 3 * 1 * 7
       = 84

Below is the implementation of above algorithm.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find LCM of array without
// using GCD.
#include<bits/stdc++.h>
using namespace std;
  
// Returns LCM of arr[0..n-1]
unsigned long long int LCM(int arr[], int n)
{
    // Find the maximum value in arr[]
    int max_num = 0;
    for (int i=0; i<n; i++)
        if (max_num < arr[i])
            max_num = arr[i];
  
    // Initialize result
    unsigned long long int res = 1;
  
    // Find all factors that are present in
    // two or more array elements.
    int x = 2;  // Current factor.
    while (x <= max_num)
    {
        // To store indexes of all array
        // elements that are divisible by x.
        vector<int> indexes;
        for (int j=0; j<n; j++)
            if (arr[j]%x == 0)
                indexes.push_back(j);
  
        // If there are 2 or more array elements
        // that are divisible by x.
        if (indexes.size() >= 2)
        {
            // Reduce all array elements divisible
            // by x.
            for (int j=0; j<indexes.size(); j++)
                arr[indexes[j]] = arr[indexes[j]]/x;
  
            res = res * x;
        }
        else
            x++;
    }
  
    // Then multiply all reduced array elements
    for (int i=0; i<n; i++)
        res = res*arr[i];
  
    return res;
}
  
// Driver code
int main()
{
    int arr[] = {1, 2, 3, 4, 5, 10, 20, 35};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << LCM(arr, n) << "\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java.util.Vector;
  
// Java program to find LCM of array without 
// using GCD.
class GFG {
  
// Returns LCM of arr[0..n-1] 
    static long LCM(int arr[], int n) {
        // Find the maximum value in arr[] 
        int max_num = 0;
        for (int i = 0; i < n; i++) {
            if (max_num < arr[i]) {
                max_num = arr[i];
            }
        }
  
        // Initialize result 
        long res = 1;
  
        // Find all factors that are present in 
        // two or more array elements. 
        int x = 2; // Current factor. 
        while (x <= max_num) {
            // To store indexes of all array 
            // elements that are divisible by x. 
            Vector<Integer> indexes = new Vector<>();
            for (int j = 0; j < n; j++) {
                if (arr[j] % x == 0) {
                    indexes.add(indexes.size(), j);
                }
            }
  
            // If there are 2 or more array elements 
            // that are divisible by x. 
            if (indexes.size() >= 2) {
                // Reduce all array elements divisible 
                // by x. 
                for (int j = 0; j < indexes.size(); j++) {
                    arr[indexes.get(j)] = arr[indexes.get(j)] / x;
                }
  
                res = res * x;
            } else {
                x++;
            }
        }
  
        // Then multiply all reduced array elements 
        for (int i = 0; i < n; i++) {
            res = res * arr[i];
        }
  
        return res;
    }
  
// Driver code 
    public static void main(String[] args) {
        int arr[] = {1, 2, 3, 4, 5, 10, 20, 35};
        int n = arr.length;
        System.out.println(LCM(arr, n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Pyhton3 program to find LCM of array 
# without using GCD.
  
# Returns LCM of arr[0..n-1]
def LCM(arr, n):
      
    # Find the maximum value in arr[]
    max_num = 0;
    for i in range(n):
        if (max_num < arr[i]):
            max_num = arr[i];
  
    # Initialize result
    res = 1;
  
    # Find all factors that are present 
    # in two or more array elements.
    x = 2; # Current factor.
    while (x <= max_num):
          
        # To store indexes of all array
        # elements that are divisible by x.
        indexes = [];
        for j in range(n):
            if (arr[j] % x == 0):
                indexes.append(j);
  
        # If there are 2 or more array 
        # elements that are divisible by x.
        if (len(indexes) >= 2):
              
            # Reduce all array elements 
            # divisible by x.
            for j in range(len(indexes)):
                arr[indexes[j]] = int(arr[indexes[j]] / x);
  
            res = res * x;
        else:
            x += 1;
  
    # Then multiply all reduced 
    # array elements
    for i in range(n):
        res = res * arr[i];
  
    return res;
  
# Driver code
arr = [1, 2, 3, 4, 5, 10, 20, 35];
n = len(arr);
print(LCM(arr, n));
  
# This code is contributed by chandan_jnu

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find LCM of array 
// without using GCD. 
using System;
using System.Collections;
class GFG
  
// Returns LCM of arr[0..n-1] 
static long LCM(int []arr, int n) 
    // Find the maximum value in arr[] 
    int max_num = 0; 
    for (int i = 0; i < n; i++)
    
        if (max_num < arr[i])
        
            max_num = arr[i]; 
        
    
  
    // Initialize result 
    long res = 1; 
  
    // Find all factors that are present 
    // in two or more array elements. 
    int x = 2; // Current factor. 
    while (x <= max_num)
    
        // To store indexes of all array 
        // elements that are divisible by x. 
        ArrayList indexes = new ArrayList(); 
        for (int j = 0; j < n; j++)
        
            if (arr[j] % x == 0)
            
                indexes.Add(j); 
            
        
  
        // If there are 2 or more array elements 
        // that are divisible by x. 
        if (indexes.Count >= 2) 
        
            // Reduce all array elements divisible 
            // by x. 
            for (int j = 0; j < indexes.Count; j++) 
            
                arr[(int)indexes[j]] = arr[(int)indexes[j]] / x; 
            
  
            res = res * x; 
        } else 
        
            x++; 
        
    
  
    // Then multiply all reduced 
    // array elements 
    for (int i = 0; i < n; i++) 
    
        res = res * arr[i]; 
    
  
    return res; 
  
// Driver code 
public static void Main()
    int []arr = {1, 2, 3, 4, 5, 10, 20, 35}; 
    int n = arr.Length; 
    Console.WriteLine(LCM(arr, n)); 
  
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find LCM of array 
// without using GCD.
  
// Returns LCM of arr[0..n-1]
function LCM($arr, $n)
{
    // Find the maximum value in arr[]
    $max_num = 0;
    for ($i = 0; $i < $n; $i++)
        if ($max_num < $arr[$i])
            $max_num = $arr[$i];
  
    // Initialize result
    $res = 1;
  
    // Find all factors that are present 
    // in two or more array elements.
    $x = 2; // Current factor.
    while ($x <= $max_num)
    {
        // To store indexes of all array
        // elements that are divisible by x.
        $indexes = array();
        for ($j = 0; $j < $n; $j++)
            if ($arr[$j] % $x == 0)
                array_push($indexes, $j);
  
        // If there are 2 or more array 
        // elements that are divisible by x.
        if (count($indexes) >= 2)
        {
            // Reduce all array elements 
            // divisible by x.
            for ($j = 0; $j < count($indexes); $j++)
                $arr[$indexes[$j]] = (int)($arr[$indexes[$j]] / $x);
  
            $res = $res * $x;
        }
        else
            $x++;
    }
  
    // Then multiply all reduced 
    // array elements
    for ($i = 0; $i < $n; $i++)
        $res = $res * $arr[$i];
  
    return $res;
}
  
// Driver code
$arr = array(1, 2, 3, 4, 5, 10, 20, 35);
$n = count($arr);
echo LCM($arr, $n) . "\n";
  
// This code is contributed by chandan_jnu
?>

chevron_right



Output:

420

This article is contributed by Aditya Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.