Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Finding ‘k’ such that its modulus with each array element is same

  • Difficulty Level : Medium
  • Last Updated : 23 Jun, 2021

Given an array of n integers .We need to find all ‘k’ such that 

arr[0] % k = arr[1] % k = ....... = arr[n-1] % k 

Examples: 
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Input  : arr[] = {6, 38, 34}
Output : 1 2 4
        6%1 = 38%1 = 34%1 = 0
        6%2 = 38%2 = 34%2 = 0
        6%4 = 38%4 = 34%2 = 2

Input  : arr[] = {3, 2}
Output : 1

 

Suppose the array contains only two elements a and b (b>a). So we can write b = a + d where d is a positive integer and ‘k’ be a number such that b%k = a%k. 



(a + d)%k = a%k
a%k + d%k = a%k 
d%k = 0

Now what we get from the above calculation is that ‘k’ should be a divisor of difference between the two numbers. 
Now what we have to do when we have an array of integers 
 

  1. Find out the difference ‘d’ between maximum and minimum element of the array
  2. Find out all the divisors of ‘d’
  3. Step 3: For each divisor check if arr[i]%divisor(d) is same or not .if it is same print it.

 

C++




// C++ implementation of finding all k
// such that arr[i]%k is same for each i
#include<bits/stdc++.h>
using namespace std;
 
// Prints all k such that arr[i]%k is same for all i
void printEqualModNumbers (int arr[], int n)
{
    // sort the numbers
    sort(arr, arr + n);
 
    // max difference will be the difference between
    // first and last element of sorted array
    int d = arr[n-1] - arr[0];
     
    // Case when all the array elements are same
    if(d==0){
        cout<<"Infinite solution";
        return;
    }
 
    // Find all divisors of d and store in
    // a vector v[]
    vector <int> v;
    for (int i=1; i*i<=d; i++)
    {
        if (d%i == 0)
        {
            v.push_back(i);
            if (i != d/i)
                v.push_back(d/i);
        }
    }
 
    // check for each v[i] if its modulus with
    // each array element is same or not
    for (int i=0; i<v.size(); i++)
    {
        int temp = arr[0]%v[i];
 
        // checking for each array element if
        // its modulus with k is equal to k or not
        int j;
        for (j=1; j<n; j++)
            if (arr[j] % v[i] != temp)
                break;
 
        // if check is true print v[i]
        if (j == n)
            cout << v[i] <<" ";
    }
}
 
// Driver function
int main()
{
    int arr[] = {38, 6, 34};
    int n = sizeof(arr)/sizeof(arr[0]);
    printEqualModNumbers(arr, n);
    return 0;
}

Java




//  Java implementation of finding all k
// such that arr[i]%k is same for each i
 
import java.util.Arrays;
import java.util.Vector;
 
class Test
{
    // Prints all k such that arr[i]%k is same for all i
    static void printEqualModNumbers (int arr[], int n)
    {
        // sort the numbers
        Arrays.sort(arr);
      
        // max difference will be the difference between
        // first and last element of sorted array
        int d = arr[n-1] - arr[0];
        // Case when all the array elements are same
        if(d==0){
            System.out.println("Infinite solution");
            return;
        }
        // Find all divisors of d and store in
        // a vector v[]
        Vector<Integer> v = new Vector<>();
        for (int i=1; i*i<=d; i++)
        {
            if (d%i == 0)
            {
                v.add(i);
                if (i != d/i)
                    v.add(d/i);
            }
        }
      
        // check for each v[i] if its modulus with
        // each array element is same or not
        for (int i=0; i<v.size(); i++)
        {
            int temp = arr[0]%v.get(i);
      
            // checking for each array element if
            // its modulus with k is equal to k or not
            int j;
            for (j=1; j<n; j++)
                if (arr[j] % v.get(i) != temp)
                    break;
      
            // if check is true print v[i]
            if (j == n)
                System.out.print(v.get(i) + " ");
        }
    }
     
    // Driver method
    public static void main(String args[])
    {
        int arr[] = {38, 6, 34};
         
        printEqualModNumbers(arr, arr.length);
    }
}

Python3




# Python3 implementation of finding all k
# such that arr[i]%k is same for each i
 
# Prints all k such that arr[i]%k is
# same for all i
def printEqualModNumbers(arr, n):
     
    # sort the numbers
    arr.sort();
     
    # max difference will be the difference
    # between first and last element of
    # sorted array
    d = arr[n - 1] - arr[0];
    // Case when all the array elements are same
    if(d==0):
        print("Infinite solution")
        return
     
    # Find all divisors of d and store
    # in a vector v[]
    v = [];
    i = 1;
    while (i * i <= d):
        if (d % i == 0):
                v.append(i);
                if (i != d / i):
                    v.append(d / i);
        i += 1;
     
    # check for each v[i] if its modulus with
    # each array element is same or not
    for i in range(len(v)):
        temp = arr[0] % v[i];
     
        # checking for each array element if
        # its modulus with k is equal to k or not
        j = 1;
        while (j < n):
            if (arr[j] % v[i] != temp):
                break;
            j += 1;
 
        # if check is true print v[i]
        if (j == n):
            print(v[i], end = " ");
 
# Driver Code
arr = [38, 6, 34];
printEqualModNumbers(arr, len(arr));
         
# This code is contributed by mits

C#




// C# implementation of finding all k
// such that arr[i]%k is same for each i
using System;
using System.Collections;
class Test
{
    // Prints all k such that arr[i]%k is same for all i
    static void printEqualModNumbers (int []arr, int n)
    {
        // sort the numbers
        Array.Sort(arr);
     
        // max difference will be the difference between
        // first and last element of sorted array
        int d = arr[n-1] - arr[0];
        // Case when all the array elements are same
        if(d==0){
            Console.write("Infinite solution");
            return;
        }
        // Find all divisors of d and store in
        // a vector v[]
        ArrayList v = new ArrayList();
        for (int i=1; i*i<=d; i++)
        {
            if (d%i == 0)
            {
                v.Add(i);
                if (i != d/i)
                    v.Add(d/i);
            }
        }
     
        // check for each v[i] if its modulus with
        // each array element is same or not
        for (int i=0; i<v.Count; i++)
        {
            int temp = arr[0]%(int)v[i];
     
            // checking for each array element if
            // its modulus with k is equal to k or not
            int j;
            for (j=1; j<n; j++)
                if (arr[j] % (int)v[i] != temp)
                    break;
     
            // if check is true print v[i]
            if (j == n)
                Console.Write(v[i] + " ");
        }
    }
     
    // Driver method
    public static void Main()
    {
        int []arr = {38, 6, 34};
         
        printEqualModNumbers(arr, arr.Length);
    }
}
// This code is contributed by mits

PHP




<?php
// PHP implementation of finding all k
// such that arr[i]%k is same for each i
 
    // Prints all k such that arr[i]%k is same for all i
    function printEqualModNumbers ($arr, $n)
    {
        // sort the numbers
        sort($arr);
     
        // max difference will be the difference between
        // first and last element of sorted array
        $d = $arr[$n-1] - $arr[0];
        // Case when all the array elements are same
        if(d==0){
            print("Infinite solution");
            return;
        }
        // Find all divisors of d and store in
        // a vector v[]
        $v = array();
        for ($i=1; $i*$i<=$d; $i++)
        {
            if ($d%$i == 0)
            {
                array_push($v,$i);
                if ($i != $d/$i)
                    array_push($v,$d/$i);
            }
        }
     
        // check for each v[i] if its modulus with
        // each array element is same or not
        for ($i=0; $i<count($v); $i++)
        {
            $temp = $arr[0]%$v[$i];
     
            // checking for each array element if
            // its modulus with k is equal to k or not
            $j=1;
            for (; $j<$n; $j++)
                if ($arr[$j] % $v[$i] != $temp)
                    break;
     
            // if check is true print v[i]
            if ($j == $n)
                print($v[$i]." ");
        }
    }
     
    // Driver method
     
        $arr = array(38, 6, 34);
         
        printEqualModNumbers($arr, count($arr));
         
// This code is contributed by mits
?>

Javascript




<script>
 
// JavaScript implementation of finding all k
// such that arr[i]%k is same for each i
 
    // Prints all k such that arr[i]%k is same for all i
    function printEqualModNumbers (arr, n)
    {
        // sort the numbers
        arr.sort((a, b) => a - b);
     
        // max difference will be the difference between
        // first and last element of sorted array
        d = arr[n-1] - arr[0];
        // Case when all the array elements are same
        if(d==0){
            document.write("Infinite solution");
            return;
        }
        // Find all divisors of d and store in
        // a vector v[]
        v = new Array();
        for (i=1; i*i<=d; i++)
        {
            if (d%i == 0)
            {
                v.push(i);
                if (i != d/i)
                    v.push(d/i);
            }
        }
     
        // check for each v[i] if its modulus with
        // each array element is same or not
        for (i=0; i< v.length; i++)
        {
            temp = arr[0]%v[i];
     
            // checking for each array element if
            // its modulus with k is equal to k or not
            j=1;
            for (; j<n; j++)
                if (arr[j] % v[i] != temp)
                    break;
     
            // if check is true print v[i]
            if (j == n)
                document.write(v[i] + " ");
        }
    }
     
    // Driver method
     
        let arr = new Array(38, 6, 34);
         
        printEqualModNumbers(arr, arr.length);
         
// This code is contributed by _saurabh_jaiswal
 
</script>

Output:  

1 2 4 

This article is contributed by Ayush Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :