Related Articles

Related Articles

Finding in and out degrees of all vertices in a graph
  • Last Updated : 03 Sep, 2020

Given a directed graph, the task is to count the in and out degree of each vertex of the graph.
Examples:

Input:
Example
Output:
Vertex    In    Out
0         1    2
1          2    1
2          2    3
3          2    2
4          2    2
5          2    2
6          2    1

Approach: Traverse adjacency list for every vertex, if size of the adjacency list of vertex i is x then the out degree for i = x and increment the in degree of every vertex that has an incoming edge from i. Repeat the steps for every vertex and print the in and out degrees for all the vertices in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the in and out degrees
// of the vertices of the given graph
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the in and out degrees
// of all the vertices of the given graph
void findInOutDegree(list<list<int>> adjlist,
                     int n)
{
    int* iN = new int[n]();
    int* ouT = new int[n]();
  
    list<list<int> >::iterator nest_list;
    int i = 0;
      
    for(nest_list = adjlist.begin(); 
        nest_list != adjlist.end();
        nest_list++) 
    {
        list<int> lst = *nest_list;
  
        // Out degree for ith vertex will be the count
        // of direct paths from i to other vertices
        ouT[i] = lst.size();
          
        for(auto it = lst.begin(); 
                 it != lst.end(); it++)
        {
            // Every vertex that has an incoming
            // edge from i
            iN[*it]++;
        }
        i++;
    }
  
    cout << "Vertex\t\tIn\t\tOut" << endl;
    for(int k = 0; k < n; k++)
    {
        cout << k << "\t\t"
             << iN[k] << "\t\t" 
             << ouT[k] << endl;
    }
}
  
// Driver code
int main()
{
      
    // Adjacency list representation of the graph
    list<list<int>> adjlist;
  
    // Vertices 1 and 2 have an incoming edge
    // from vertex 0
    list<int> tmp;
    tmp.push_back(1);
    tmp.push_back(2);
    adjlist.push_back(tmp);
    tmp.clear();
  
    // Vertex 3 has an incoming edge 
    // from vertex 1
    tmp.push_back(3);
    adjlist.push_back(tmp);
    tmp.clear();
  
    // Vertices 0, 5 and 6 have an incoming
    // edge from vertex 2
    tmp.push_back(0);
    tmp.push_back(5);
    tmp.push_back(6);
    adjlist.push_back(tmp);
    tmp.clear();
  
    // Vertices 1 and 4 have an incoming 
    // edge from vertex 3
    tmp.push_back(1);
    tmp.push_back(4);
    adjlist.push_back(tmp);
    tmp.clear();
  
    // Vertices 2 and 3 have an incoming 
    // edge from vertex 4
    tmp.push_back(2);
    tmp.push_back(3);
    adjlist.push_back(tmp);
    tmp.clear();
  
    // Vertices 4 and 6 have an incoming 
    // edge from vertex 5
    tmp.push_back(4);
    tmp.push_back(6);
    adjlist.push_back(tmp);
    tmp.clear();
  
    // Vertex 5 has an incoming 
    // edge from vertex 6
    tmp.push_back(5);
    adjlist.push_back(tmp);
    tmp.clear();
  
    int n = adjlist.size();
      
    findInOutDegree(adjlist, n);
}
  
// This code is contributed by saurabhgpta248    

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the in and out degrees
// of the vertices of the given graph
import java.util.*;
  
class GFG {
  
    // Function to print the in and out degrees
    // of all the vertices of the given graph
    static void findInOutDegree(List<List<Integer> > adjList, int n)
    {
        int in[] = new int[n];
        int out[] = new int[n];
  
        for (int i = 0; i < adjList.size(); i++) {
  
            List<Integer> list = adjList.get(i);
  
            // Out degree for ith vertex will be the count
            // of direct paths from i to other vertices
            out[i] = list.size();
            for (int j = 0; j < list.size(); j++)
  
                // Every vertex that has an incoming 
                // edge from i
                in[list.get(j)]++;
        }
  
        System.out.println("Vertex\tIn\tOut");
        for (int k = 0; k < n; k++) {
            System.out.println(k + "\t" + in[k] + "\t" + out[k]);
        }
    }
  
    // Driver code
    public static void main(String args[])
    {
        // Adjacency list representation of the graph
        List<List<Integer> > adjList = new ArrayList<>();
  
        // Vertices 1 and 2 have an incoming edge 
        // from vertex 0
        List<Integer> tmp = 
           new ArrayList<Integer>(Arrays.asList(1, 2));
        adjList.add(tmp);
  
        // Vertex 3 has an incoming edge from vertex 1
        tmp = new ArrayList<Integer>(Arrays.asList(3));
        adjList.add(tmp);
  
        // Vertices 0, 5 and 6 have an incoming
        // edge from vertex 2
        tmp = 
          new ArrayList<Integer>(Arrays.asList(0, 5, 6));
        adjList.add(tmp);
  
        // Vertices 1 and 4 have an incoming edge 
        // from vertex 3
        tmp = new ArrayList<Integer>(Arrays.asList(1, 4));
        adjList.add(tmp);
  
        // Vertices 2 and 3 have an incoming edge
        // from vertex 4
        tmp = new ArrayList<Integer>(Arrays.asList(2, 3));
        adjList.add(tmp);
  
        // Vertices 4 and 6 have an incoming edge
        // from vertex 5
        tmp = new ArrayList<Integer>(Arrays.asList(4, 6));
        adjList.add(tmp);
  
        // Vertex 5 has an incoming edge from vertex 6
        tmp = new ArrayList<Integer>(Arrays.asList(5));
        adjList.add(tmp);
  
        int n = adjList.size();
        findInOutDegree(adjList, n);
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the in and out 
# degrees of the vertices of the given graph 
  
# Function to print the in and out degrees 
# of all the vertices of the given graph 
def findInOutDegree(adjList, n): 
      
    _in = [0] *
    out = [0] * n
  
    for i in range(0, len(adjList)): 
  
        List = adjList[i] 
  
        # Out degree for ith vertex will be the count 
        # of direct paths from i to other vertices 
        out[i] = len(List
        for j in range(0, len(List)): 
  
            # Every vertex that has 
            # an incoming edge from i 
            _in[List[j]] += 1
  
    print("Vertex\tIn\tOut"
    for k in range(0, n): 
        print(str(k) + "\t" + str(_in[k]) + 
                       "\t" + str(out[k])) 
  
# Driver code 
if __name__ == "__main__"
      
    # Adjacency list representation of the graph 
    adjList = [] 
  
    # Vertices 1 and 2 have an incoming edge 
    # from vertex 0 
    adjList.append([1, 2]) 
  
    # Vertex 3 has an incoming edge from vertex 1 
    adjList.append([3]) 
  
    # Vertices 0, 5 and 6 have an 
    # incoming edge from vertex 2 
    adjList.append([0, 5, 6]) 
  
    # Vertices 1 and 4 have an 
    # incoming edge from vertex 3 
    adjList.append([1, 4]) 
  
    # Vertices 2 and 3 have an 
    # incoming edge from vertex 4 
    adjList.append([2, 3]) 
  
    # Vertices 4 and 6 have an 
    # incoming edge from vertex 5 
    adjList.append([4, 6]) 
  
    # Vertex 5 has an incoming edge from vertex 6 
    adjList.append([5]) 
  
    n = len(adjList) 
    findInOutDegree(adjList, n) 
      
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the in and out degrees
// of the vertices of the given graph
using System;
using System.Collections.Generic;    
  
class GFG
{
  
// Function to print the in and out degrees
// of all the vertices of the given graph
static void findInOutDegree(List<List<int>> adjList, int n)
{
    int []iN = new int[n];
    int []ouT = new int[n];
  
    for (int i = 0; i < adjList.Count; i++) 
    {
  
        List<int> list = adjList[i];
  
        // Out degree for ith vertex will be the count
        // of direct paths from i to other vertices
        ouT[i] = list.Count;
        for (int j = 0; j < list.Count; j++)
  
            // Every vertex that has an incoming 
            // edge from i
            iN[list[j]]++;
    }
  
    Console.WriteLine("Vertex\t\tIn\t\tOut");
    for (int k = 0; k < n; k++)
    {
        Console.WriteLine(k + "\t\t"
                      iN[k] + "\t\t" + ouT[k]);
    }
}
  
// Driver code
public static void Main(String []args)
{
    // Adjacency list representation of the graph
    List<List<int> > adjList = new List<List<int>>();
  
    // Vertices 1 and 2 have an incoming edge 
    // from vertex 0
    List<int> tmp = 
    new List<int>{1, 2};
    adjList.Add(tmp);
  
    // Vertex 3 has an incoming edge from vertex 1
    tmp = new List<int>{3};
    adjList.Add(tmp);
  
    // Vertices 0, 5 and 6 have an incoming
    // edge from vertex 2
    tmp = 
    new List<int>{0, 5, 6};
    adjList.Add(tmp);
  
    // Vertices 1 and 4 have an incoming edge 
    // from vertex 3
    tmp = new List<int>{1, 4};
    adjList.Add(tmp);
  
    // Vertices 2 and 3 have an incoming edge
    // from vertex 4
    tmp = new List<int>{2, 3};
    adjList.Add(tmp);
  
    // Vertices 4 and 6 have an incoming edge
    // from vertex 5
    tmp = new List<int>{4, 6};
    adjList.Add(tmp);
  
    // Vertex 5 has an incoming edge from vertex 6
    tmp = new List<int>{5};
    adjList.Add(tmp);
  
    int n = adjList.Count;
    findInOutDegree(adjList, n);
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output: 

Vertex    In    Out
0    1    2
1    2    1
2    2    3
3    2    2
4    2    2
5    2    2
6    2    1

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :