# Find x and y satisfying ax + by = n

Given a, b and n. Find x and y that satisfies ax + by = n. Print any of the x and y satisfying the equation

Examples :

```Input : n=7 a=2 b=3
Output : x=2, y=1
Explanation: here x and y satisfies the equation

Input : 4 2 7
Output : No solution
```

## Recommended: Please solve it on PRACTICE first, before moving on to the solution.

We can check if any solutions exists or not using Linear Diophantine Equations, but here we need to find out the solutions for this equation, so we can simply iterate for all possible values from 0 to n as it cannot exceed n for this given equation. So solving this equation with pen and paper gives y=(n-ax)/b and similarly we get the other number to be x=(n-by)/a.If none of the values satisfies the equation, at the end we print “no solution”

## C++

 `// CPP program to find solution of ax + by = n ` `#include ` `using` `namespace` `std; ` ` `  `// function to find the solution ` `void` `solution(``int` `a, ``int` `b, ``int` `n) ` `{ ` `    ``// traverse for all possible values ` `    ``for` `(``int` `i = 0; i * a <= n; i++) { ` ` `  `        ``// check if it is satisfying the equation ` `        ``if` `((n - (i * a)) % b == 0) { ` `            ``cout << ``"x = "` `<< i << ``", y = "`  `                 ``<< (n - (i * a)) / b; ` `            ``return``; ` `        ``} ` `    ``} ` ` `  `    ``cout << ``"No solution"``; ` `} ` ` `  `// driver program to test the above function ` `int` `main() ` `{ ` `    ``int` `a = 2, b = 3, n = 7; ` `    ``solution(a, b, n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find solution ` `// of ax + by = n ` `import` `java.io.*; ` ` `  `class` `GfG { ` `         `  `    ``// function to find the solution ` `    ``static` `void` `solution(``int` `a, ``int` `b, ``int` `n) ` `    ``{ ` `        ``// traverse for all possible values ` `        ``for` `(``int` `i = ``0``; i * a <= n; i++) ` `        ``{ ` `     `  `            ``// check if it is satisfying the equation ` `            ``if` `((n - (i * a)) % b == ``0``) ` `            ``{ ` `                ``System.out.println(``"x = "` `+ i +  ` `                                   ``", y = "` `+  ` `                                   ``(n - (i * a)) / b); ` `                 `  `                ``return` `; ` `            ``} ` `        ``} ` `     `  `        ``System.out.println(``"No solution"``); ` `    ``} ` `     `  `     `  `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `a = ``2``, b = ``3``, n = ``7``; ` `        ``solution(a, b, n); ` `     `  `    ``} ` `} ` ` `  `// This code is contributed by Gitanjali. `

## Python3

 `# Python3 code to find solution of ` `# ax + by = n ` ` `  `# function to find the solution ` `def` `solution (a, b, n): ` ` `  `    ``# traverse for all possible values ` `    ``i ``=` `0` `    ``while` `i ``*` `a <``=` `n: ` `         `  `        ``# check if it is satisfying ` `        ``# the equation ` `        ``if` `(n ``-` `(i ``*` `a)) ``%` `b ``=``=` `0``: ` `            ``print``(``"x = "``,i ,``", y = "``, ` `               ``int``((n ``-` `(i ``*` `a)) ``/` `b)) ` `            ``return` `0` `        ``i ``=` `i ``+` `1` `     `  `    ``print``(``"No solution"``) ` ` `  `# driver program to test the above function ` `a ``=` `2` `b ``=` `3` `n ``=` `7` `solution(a, b, n) ` ` `  `# This code is contributed by "Sharad_Bhardwaj". `

## C#

 `// C# program to find solution ` `// of ax + by = n ` `using` `System; ` ` `  `class` `GfG { ` `         `  `    ``// function to find the solution ` `    ``static` `void` `solution(``int` `a, ``int` `b, ``int` `n) ` `    ``{ ` `         `  `        ``// traverse for all possible values ` `        ``for` `(``int` `i = 0; i * a <= n; i++) ` `        ``{ ` `     `  `            ``// check if it is satisfying the ` `            ``// equation ` `            ``if` `((n - (i * a)) % b == 0) ` `            ``{ ` `                ``Console.Write(``"x = "` `+ i +  ` `                                ``", y = "` `+  ` `                        ``(n - (i * a)) / b); ` `                 `  `                ``return` `; ` `            ``} ` `        ``} ` `     `  `        ``Console.Write(``"No solution"``); ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main ()  ` `    ``{ ` `        ``int` `a = 2, b = 3, n = 7; ` `        ``solution(a, b, n); ` `     `  `    ``} ` `} ` ` `  `// This code is contributed by Vt_m. `

## PHP

 ` `

Output :

```x = 2, y = 1
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : vt_m

Article Tags :
Practice Tags :

5

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.