Find x and y satisfying ax + by = n

Given a, b and n. Find x and y that satisfies ax + by = n. Print any of the x and y satisfying the equation

Examples :

Input : n=7 a=2 b=3
Output : x=2, y=1 
Explanation: here x and y satisfies the equation

Input : 4 2 7 
Output : No solution



We can check if any solutions exists or not using Linear Diophantine Equations, but here we need to find out the solutions for this equation, so we can simply iterate for all possible values from 0 to n as it cannot exceed n for this given equation. So solving this equation with pen and paper gives y=(n-ax)/b and similarly we get the other number to be x=(n-by)/a.If none of the values satisfies the equation, at the end we print “no solution”

C++

// CPP program to find solution of ax + by = n
#include <bits/stdc++.h>
using namespace std;
  
// function to find the solution
void solution(int a, int b, int n)
{
    // traverse for all possible values
    for (int i = 0; i * a <= n; i++) {
  
        // check if it is satisfying the equation
        if ((n - (i * a)) % b == 0) {
            cout << "x = " << i << ", y = " 
                 << (n - (i * a)) / b;
            return;
        }
    }
  
    cout << "No solution";
}
  
// driver program to test the above function
int main()
{
    int a = 2, b = 3, n = 7;
    solution(a, b, n);
    return 0;
}

Java

// Java program to find solution
// of ax + by = n
import java.io.*;
  
class GfG {
          
    // function to find the solution
    static void solution(int a, int b, int n)
    {
        // traverse for all possible values
        for (int i = 0; i * a <= n; i++)
        {
      
            // check if it is satisfying the equation
            if ((n - (i * a)) % b == 0)
            {
                System.out.println("x = " + i + 
                                   ", y = "
                                   (n - (i * a)) / b);
                  
                return ;
            }
        }
      
        System.out.println("No solution");
    }
      
      
    public static void main (String[] args) 
    {
        int a = 2, b = 3, n = 7;
        solution(a, b, n);
      
    }
}
  
// This code is contributed by Gitanjali.

Python3

# Python3 code to find solution of
# ax + by = n
  
# function to find the solution
def solution (a, b, n):
  
    # traverse for all possible values
    i = 0
    while i * a <= n:
          
        # check if it is satisfying
        # the equation
        if (n - (i * a)) % b == 0:
            print("x = ",i ,", y = ",
               int((n - (i * a)) / b))
            return 0
        i = i + 1
      
    print("No solution")
  
# driver program to test the above function
a = 2
b = 3
n = 7
solution(a, b, n)
  
# This code is contributed by "Sharad_Bhardwaj".

C#

// C# program to find solution
// of ax + by = n
using System;
  
class GfG {
          
    // function to find the solution
    static void solution(int a, int b, int n)
    {
          
        // traverse for all possible values
        for (int i = 0; i * a <= n; i++)
        {
      
            // check if it is satisfying the
            // equation
            if ((n - (i * a)) % b == 0)
            {
                Console.Write("x = " + i + 
                                ", y = "
                        (n - (i * a)) / b);
                  
                return ;
            }
        }
      
        Console.Write("No solution");
    }
      
    // Driver code
    public static void Main () 
    {
        int a = 2, b = 3, n = 7;
        solution(a, b, n);
      
    }
}
  
// This code is contributed by Vt_m.

PHP

<?php
// PHP program to find 
// solution of ax + by = n
  
// function to find the solution
function solution($a, $b, $n)
{
    // traverse for all possible values
    for ($i = 0; $i * $a <= $n; $i++) 
    {
  
        // check if it is satisfying
        // the equation
        if (($n - ($i * $a)) % $b == 0) 
        {
            echo "x = " , $i , ", y = " ,
                   ($n - ($i * $a)) / $b;
            return;
        }
    }
  
    echo "No solution";
}
  
// Driver Code
$a = 2; $b = 3; $n = 7;
solution($a, $b, $n);
  
// This code is contributed by anuj_67.
?>


Output :

x = 2, y = 1         


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.