There are a total of n tasks you have to pick, labeled from 0 to n-1. Some tasks may have prerequisites, for example to pick task 0 you have to first pick task 1, which is expressed as a pair: [0, 1]

Given the total number of tasks and a list of prerequisite pairs, is it possible for you to finish all tasks?

Examples:

Input: 2, [[1, 0]]

Output: true

Explanation: There are a total of 2 tasks to pick. To pick task 1 you should have finished task 0. So it is possible.Input: 2, [[1, 0], [0, 1]]

Output: false

Explanation: There are a total of 2 tasks to pick. To pick task 1 you should have finished task 0, and to pick task 0 you should also have finished task 1. So it is impossible.Input: 3, [[1, 0], [2, 1], [3, 2]]

Output: true

Explanation: There are a total of 3 tasks to pick. To pick tasks 1 you should have finished task 0, and to pick task 2 you should have finished task 1 and to pick task 3 you should have finished task 2. So it is possible.

**Asked In:** Google, Twitter, Amazon and many more companies.

**Solution: ** We can consider this problem as a graph (related to topological sorting) problem. All tasks are nodes of the graph and if task u is a prerequisite of task v, we will add a directed edge from node u to node v. Now, this problem is equivalent to detecting a cycle in the graph represented by prerequisites. If there is a cycle in the graph, then it is not possible to finish all tasks (because in that case there is no any topological order of tasks). Both BFS and DFS can be used to solve it.

Since pair is inconvenient for the implementation of graph algorithms, we first transform it to a graph. If task u is a prerequisite of task v, we will add a directed edge from node u to node v.

Prerequisite : Detect Cycle in a Directed Graph

**Using DFS** For DFS, it will first visit a node, then one neighbor of it, then one neighbor of this neighbor… and so on. If it meets a node which was visited in the current process of DFS visit, a cycle is detected and we will return false. Otherwise it will start from another unvisited node and repeat this process till all the nodes have been visited. Note that you should make two records: one is to record all the visited nodes and the other is to record the visited nodes in the current DFS visit.

The code is as follows. We use a vector visited to record all the visited nodes and another vector onpath to record the visited nodes of the current DFS visit. Once the current visit is finished, we reset the onpath value of the starting node to false.

`// CPP program to check whether we can finish all ` `// tasks or not from given dependencies. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; `
` ` `// Returns adjacency list representation from a list ` `// of pairs. ` `vector<unordered_set<` `int` `> > make_graph(` `int` `numTasks, `
` ` `vector<pair<` `int` `, ` `int` `> >& prerequisites) `
`{ ` ` ` `vector<unordered_set<` `int` `> > graph(numTasks); `
` ` `for` `(` `auto` `pre : prerequisites) `
` ` `graph[pre.second].insert(pre.first); `
` ` `return` `graph; `
`} ` ` ` `// A DFS based function to check if there is a cycle ` `// in the directed graph. ` `bool` `dfs_cycle(vector<unordered_set<` `int` `> >& graph, ` `int` `node, `
` ` `vector<` `bool` `>& onpath, vector<` `bool` `>& visited) `
`{ ` ` ` `if` `(visited[node]) `
` ` `return` `false` `; `
` ` `onpath[node] = visited[node] = ` `true` `; `
` ` `for` `(` `int` `neigh : graph[node]) `
` ` `if` `(onpath[neigh] || dfs_cycle(graph, neigh, onpath, visited)) `
` ` `return` `true` `; `
` ` `return` `onpath[node] = ` `false` `; `
`} ` ` ` `// Main function to check whether possible to finish all tasks or not ` `bool` `canFinish(` `int` `numTasks, vector<pair<` `int` `, ` `int` `> >& prerequisites) `
`{ ` ` ` `vector<unordered_set<` `int` `> > graph = make_graph(numTasks, prerequisites); `
` ` `vector<` `bool` `> onpath(numTasks, ` `false` `), visited(numTasks, ` `false` `); `
` ` `for` `(` `int` `i = 0; i < numTasks; i++) `
` ` `if` `(!visited[i] && dfs_cycle(graph, i, onpath, visited)) `
` ` `return` `false` `; `
` ` `return` `true` `; `
`} ` ` ` `int` `main() `
`{ ` ` ` `int` `numTasks = 4; `
` ` ` ` `vector<pair<` `int` `, ` `int` `> > prerequisites; `
` ` ` ` `// for prerequisites: [[1, 0], [2, 1], [3, 2]] `
` ` ` ` `prerequisites.push_back(make_pair(1, 0)); `
` ` `prerequisites.push_back(make_pair(2, 1)); `
` ` `prerequisites.push_back(make_pair(3, 2)); `
` ` `if` `(canFinish(numTasks, prerequisites)) { `
` ` `cout << ` `"Possible to finish all tasks"` `; `
` ` `} `
` ` `else` `{ `
` ` `cout << ` `"Impossible to finish all tasks"` `; `
` ` `} `
` ` ` ` `return` `0; `
`} ` |

*chevron_right*

*filter_none*

**Output:**

Possible to finish all tasks

**Using BFS**

BFS can be used to solve it using the idea of topological sort. If topological sorting is possible, it means there is no cycle and it is possible to finish all the tasks.

BFS uses the indegrees of each node. We will first try to find a node with 0 indegree. If we fail to do so, there must be a cycle in the graph and we return false. Otherwise we have found one. We set its indegree to be -1 to prevent from visiting it again and reduce the indegrees of all its neighbors by 1. This process will be repeated for n (number of nodes) times. If we have not returned false, we will return true.

`// A BFS based solution to check if we can finish ` `// all tasks or not. This solution is mainly based ` `// on Kahn's algorithm. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; `
` ` `// Returns adjacency list representation from a list ` `// of pairs. ` `vector<unordered_set<` `int` `> > make_graph(` `int` `numTasks, `
` ` `vector<pair<` `int` `, ` `int` `> >& prerequisites) `
`{ ` ` ` `vector<unordered_set<` `int` `> > graph(numTasks); `
` ` `for` `(` `auto` `pre : prerequisites) `
` ` `graph[pre.second].insert(pre.first); `
` ` `return` `graph; `
`} ` ` ` `// Finds in-degree of every vertex ` `vector<` `int` `> compute_indegree(vector<unordered_set<` `int` `> >& graph) `
`{ ` ` ` `vector<` `int` `> degrees(graph.size(), 0); `
` ` `for` `(` `auto` `neighbors : graph) `
` ` `for` `(` `int` `neigh : neighbors) `
` ` `degrees[neigh]++; `
` ` `return` `degrees; `
`} ` ` ` `// Main function to check whether possible to finish all tasks or not ` `bool` `canFinish(` `int` `numTasks, vector<pair<` `int` `, ` `int` `> >& prerequisites) `
`{ ` ` ` `vector<unordered_set<` `int` `> > graph = make_graph(numTasks, prerequisites); `
` ` `vector<` `int` `> degrees = compute_indegree(graph); `
` ` `for` `(` `int` `i = 0; i < numTasks; i++) { `
` ` `int` `j = 0; `
` ` `for` `(; j < numTasks; j++) `
` ` `if` `(!degrees[j]) `
` ` `break` `; `
` ` `if` `(j == numTasks) `
` ` `return` `false` `; `
` ` `degrees[j] = -1; `
` ` `for` `(` `int` `neigh : graph[j]) `
` ` `degrees[neigh]--; `
` ` `} `
` ` `return` `true` `; `
`} ` ` ` `int` `main() `
`{ ` ` ` `int` `numTasks = 4; `
` ` `vector<pair<` `int` `, ` `int` `> > prerequisites; `
` ` `prerequisites.push_back(make_pair(1, 0)); `
` ` `prerequisites.push_back(make_pair(2, 1)); `
` ` `prerequisites.push_back(make_pair(3, 2)); `
` ` `if` `(canFinish(numTasks, prerequisites)) { `
` ` `cout << ` `"Possible to finish all tasks"` `; `
` ` `} `
` ` `else` `{ `
` ` `cout << ` `"Impossible to finish all tasks"` `; `
` ` `} `
` ` ` ` `return` `0; `
`} ` |

*chevron_right*

*filter_none*

**Output:**

Possible to finish all tasks

**Reference:**

https://leetcode.com/problems/course-schedule/

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Find the ordering of tasks from given dependencies
- Print completed tasks at end according to Dependencies
- Find dependencies of each Vertex in a Directed Graph
- Sum of dependencies in a graph
- Construct the Rooted tree by using start and finish time of its DFS traversal
- How to wait for a promise to finish before returning the variable of a function?
- Find time taken to execute the tasks in A based on the order of execution in B
- Check whether the cost of going from any node to any other node via all possible paths is same
- Check whether a given graph is Bipartite or not
- Check whether a given binary tree is skewed binary tree or not?
- Count of all possible Paths in a Tree such that Node X does not appear before Node Y
- Check whether a node is leaf node or not for multiple queries
- Queries to check whether a given digit is present in the given Range
- Check if moves in a stack or queue are possible or not
- Boggle (Find all possible words in a board of characters) | Set 1
- Count number of times each Edge appears in all possible paths of a given Tree
- Find whether there is path between two cells in matrix
- Check whether given degrees of vertices represent a Graph or Tree
- Check whether a very large number of the given form is a multiple of 3.
- Minimum value possible of a given function from the given set

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.