Open In App

Find ways to arrange K green balls among N balls such that exactly i moves is needed to collect all K green balls

Improve
Improve
Like Article
Like
Save
Share
Report

Given two integers N and K. There are N balls placed in a row. K of them are green and N – K of them are black. The task is to find the number of ways to arrange N balls such that one will need exactly i ( 1 ? i ? K ) moves to collect all the green balls. In one move, we can collect any group of consecutive green balls. Note that the answer can be very large. So, output answer modulo 109 + 7.

Examples: 

Input: N = 5, K = 3 
Output: 3 6 1 
There are three ways to arrange the balls so that 
one will need exactly one move: 
(G, G, G, B, B), (B, G, G, G, B), and (B, B, G, G, G).
There are six ways to arrange the balls so that 
one will need exactly two moves: 
(G, G, B, G, B), (G, G, B, B, G), (B, G, G, B, G), (B, G, B, G, G), 
(G, B, G, G, B), and (G, B, B, G, G).
There is only one way to arrange the balls so that 
one will need exactly three moves: (G, B, G, B, G).

Input: N = 100, K = 5 
Output: 96 18240 857280 13287840 61124064 
 

Approach: Only i moves have to be performed to collect K green balls, which means that K green balls are separated into i places by black balls. Therefore, let’s consider the combination as follows. 

  • First, arrange the N – K black balls in a row.
  • In between these black balls, select i places from the left end to the right end and consider placing K green balls there. There are N – K + 1C i ways to choose these.
  • For each choice, consider how many green balls will be assigned to each gap. Since it is necessary to assign one or more to each, there are K – 1C i – 1 ways to determine this.

Therefore, for each i, the answer is N – K + 1C i * K – 1C i – 1 . Finding n C r is discussed here.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100005
#define mod (int)(1e9 + 7)
 
// To store the factorial and the
// factorial mod inverse of a number
int factorial[N], modinverse[N];
 
// Function to find (a ^ m1) % mod
int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1LL * a * a) % mod;
    else if (m1 & 1)
        return (1LL * a
                * power(power(a, m1 / 2), 2))
               % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find factorial
// of all the numbers
void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (1LL
                        * factorial[i - 1] * i)
                       % mod;
}
 
// Function to find the factorial
// mod inverse of all the numbers
void modinversefun()
{
    modinverse[N - 1]
        = power(factorial[N - 1], mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (1LL * modinverse[i + 1]
                         * (i + 1))
                        % mod;
}
 
// Function to return nCr
int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (1LL * factorial[n]
             * modinverse[n - r])
            % mod;
 
    a = (1LL * a * modinverse[r]) % mod;
    return a;
}
 
// Function to find ways to arrange K green
// balls among N balls such that we need
// exactly i moves to collect all K green balls
void arrange_balls(int n, int k)
{
    factorialfun();
    modinversefun();
 
    for (int i = 1; i <= k; i++)
        cout << (1LL * binomial(n - k + 1, i)
                 * binomial(k - 1, i - 1))
                    % mod
             << " ";
}
 
// Driver code
int main()
{
    int n = 5, k = 3;
 
    // Function call
    arrange_balls(n, k);
 
    return 0;
}


Python3




# Python3 implementation of the approach
N = 100005
mod = (int)(1e9 + 7)
 
# To store the factorial and the
# factorial mod inverse of a number
factorial = [0] * N;
modinverse = [0] * N;
 
# Function to find (a ^ m1) % mod
def power(a, m1) :
     
    if (m1 == 0) :
        return 1;
    elif (m1 == 1) :
        return a;
    elif (m1 == 2) :
        return (a * a) % mod;
    elif (m1 & 1) :
        return (a * power(power(a, m1// 2), 2)) % mod;
    else :
        return power(power(a, m1 // 2), 2) % mod;
 
# Function to find factorial
# of all the numbers
def factorialfun() :
 
    factorial[0] = 1;
    for i in range(1, N) :
        factorial[i] = (factorial[i - 1] * i) % mod;
 
# Function to find the factorial
# mod inverse of all the numbers
def modinversefun() :
    modinverse[N - 1] = power(factorial[N - 1],
                                mod - 2) % mod;
     
    for i in range(N - 2 , -1, -1) :
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
 
# Function to return nCr
def binomial(n, r) :
 
    if (r > n) :
        return 0;
 
    a = (factorial[n] *
         modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
 
# Function to find ways to arrange K green
# balls among N balls such that we need
# exactly i moves to collect all K green balls
def arrange_balls(n, k) :
    factorialfun();
    modinversefun();
 
    for i in range(1, k + 1) :
        print((binomial(n - k + 1, i) *
               binomial(k - 1, i - 1)) % mod,
                                  end = " ");
 
# Driver code
if __name__ == "__main__" :
 
    n = 5; k = 3;
 
    # Function call
    arrange_balls(n, k);
 
# This code is contributed by AnkitRai01


Java




// Java implementation of the approach
 
import java.util.*;
 
class GFG{
static final int N = 100005;
static final int mod = (int)(1e9 + 7);
 
// To store the factorial and the
// factorial mod inverse of a number
static long []factorial = new long[N];
static long []modinverse = new long[N];
 
 
// Function to find (a ^ m1) % mod
static long power(long a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1L * a * a) % mod;
    else if (m1 %2== 1)
        return (1L * a
                * power(power(a, m1 / 2), 2))
               % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find factorial
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (1L
                        * factorial[i - 1] * i)
                       % mod;
}
 
// Function to find the factorial
// mod inverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1]
        = (int) (power(factorial[N - 1], mod - 2) % mod);
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (1 * modinverse[i + 1]
                         * (i + 1))
                        % mod;
}
 
// Function to return nCr
static long binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    long a = (1L * factorial[n]
             * modinverse[n - r])
            % mod;
 
    a = (1 * a * modinverse[r]) % mod;
    return a;
}
 
// Function to find ways to arrange K green
// balls among N balls such that we need
// exactly i moves to collect all K green balls
static void arrange_balls(int n, int k)
{
    factorialfun();
    modinversefun();
 
    for (int i = 1; i <= k; i++)
        System.out.print((1L * binomial(n - k + 1, i)
                 * binomial(k - 1, i - 1))
                    % mod
            + " ");
}
 
// Driver code
public static void main(String[] args)
{
    int n = 5, k = 3;
 
    // Function call
    arrange_balls(n, k);
 
}
}
 
// This code contributed by Princi Singh


C#




// C# implementation of the approach
using System;
 
class GFG{
     
static readonly int N = 100005;
static readonly int mod = (int)(1e9 + 7);
 
// To store the factorial and the
// factorial mod inverse of a number
static long []factorial = new long[N];
static long []modinverse = new long[N];
 
// Function to find (a ^ m1) % mod
static long power(long a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1L * a * a) % mod;
    else if (m1 % 2 == 1)
        return (1L * a *
        power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find factorial
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
    for(int i = 1; i < N; i++)
        factorial[i] = (1L * factorial[i - 1] * i) % mod;
}
 
// Function to find the factorial
// mod inverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1] = (int)(power(factorial[N - 1],
                                            mod - 2) % mod);
    for(int i = N - 2; i >= 0; i--)
        modinverse[i] = (1 * modinverse[i + 1] *
                        (i + 1)) % mod;
}
 
// Function to return nCr
static long binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    long a = (1L * factorial[n] *
    modinverse[n - r]) % mod;
 
    a = (1 * a * modinverse[r]) % mod;
    return a;
}
 
// Function to find ways to arrange K green
// balls among N balls such that we need
// exactly i moves to collect all K green balls
static void arrange_balls(int n, int k)
{
    factorialfun();
    modinversefun();
 
    for(int i = 1; i <= k; i++)
        Console.Write((1L * binomial(n - k + 1, i) *
                            binomial(k - 1, i - 1)) %
                                   mod + " ");
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 5, k = 3;
 
    // Function call
    arrange_balls(n, k);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




// Function to find (a ^ m1) % mod
function power(a, m1) {
    if (m1 == 0)
        return BigInt(1);
    else if (m1 == 1)
        return BigInt(a);
    else if (m1 == 2)
        return BigInt(a * a) % BigInt(mod);
    else if (m1 % BigInt(2) === BigInt(1))
        return BigInt(a * power(power(a, m1 / BigInt(2)), BigInt(2))) % BigInt(mod);
    else
        return power(power(a, m1 / BigInt(2)), BigInt(2)) % BigInt(mod);
}
 
 
function factorialfun() {
    factorial[0] = 1n;
    for (let i = 1; i < N; i++)
        factorial[i] = factorial[i - 1] * BigInt(i) % BigInt(mod);
}
 
function modinversefun() {
    modinverse[N - 1] = power(factorial[N - 1], BigInt(mod - 2)) % BigInt(mod);
 
    for (let i = N - 2; i >= 0; i--)
        modinverse[i] = modinverse[i + 1] * BigInt(i + 1) % BigInt(mod);
}
 
function binomial(n, r) {
    if (r > n)
        return 0;
 
    let a = factorial[n] * modinverse[n - r] % BigInt(mod);
 
    a = a * modinverse[r] % BigInt(mod);
    return a;
}
 
function arrange_balls(n, k) {
    factorialfun();
    modinversefun();
 
    for (let i = 1; i <= k; i++)
        console.log(binomial(n - k + 1, i) * binomial(k - 1, i - 1) % BigInt(mod) + " ");
}
 
const N = 100005;
const mod = 1e9 + 7;
let factorial = new Array(N);
let modinverse = new Array(N);
 
const n = 5, k = 3;
 
arrange_balls(n, k);


Output: 

3 6 1

 



Last Updated : 14 Apr, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads