Related Articles

# Find Union and Intersection of two unsorted arrays

• Difficulty Level : Easy
• Last Updated : 28 Jun, 2021

Given two unsorted arrays that represent two sets (elements in every array are distinct), find the union and intersection of two arrays.
For example, if the input arrays are:
arr1[] = {7, 1, 5, 2, 3, 6}
arr2[] = {3, 8, 6, 20, 7}
Then your program should print Union as {1, 2, 3, 5, 6, 7, 8, 20} and Intersection as {3, 6, 7}. Note that the elements of union and intersection can be printed in any order.

Method 0 (Using Set ):

Union of two arrays we can get with the Set data structure very easily. Set is a data structure that allows only the distinct elements in it. So, when we put the elements of both the array into the set we will get only the distinct elements that are equal to the union operation over the arrays. Let’s code it now –>

## C++

 `// C++ program for the union of two arrays using Set``#include ``using` `namespace` `std;``void` `getUnion(``int` `a[], ``int` `n, ``int` `b[], ``int` `m)``{``    ` `    ``// Defining set container s``    ``set<``int``> s;``  ` `    ``// Inserting array elements in s``    ``for` `(``int` `i = 0; i < n; i++)``      ``s.insert(a[i]);``  ` `    ``for` `(``int` `i = 0; i < m; i++)``        ``s.insert(b[i]);``    ``cout << ``"Number of elements after union operation: "` `<< s.size() << endl;``      ``cout << ``"The union set of both arrays is :"` `<< endl;``    ``for` `(``auto` `itr = s.begin(); itr != s.end(); itr++)``        ``cout << *itr``             ``<< ``" "``; ``// s will contain only distinct``                     ``// elements from array a and b``}` `// Driver Code``int` `main()``{``    ``int` `a = { 1, 2, 5, 6, 2, 3, 5, 7, 3 };``    ``int` `b = { 2, 4, 5, 6, 8, 9, 4, 6, 5, 4 };` `    ``getUnion(a, 9, b, 10);``}` `// contributed by Anirban Chand`

## Javascript

 ``

Output:

```Number of elements after union operation: 9
The union set of both arrays is :
1 2 3 4 5 6 7 8 9 ```

Time Complexity: O(m * log(m) + n * log(n))

Method 1 (Using map data structure)

From the knowledge of data structures, we know that map stores distinct keys only. So if we insert any key appearing more than one time it gets stored only once. The idea is to insert both the arrays in one common map which would then store the distinct elements of both arrays (union of both the array).

Below is the implementation of the above method:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;``void` `printUnion(``int``* a, ``int` `n, ``int``* b, ``int` `m)``{``    ` `    ``// Defining map container mp``    ``map<``int``, ``int``> mp;``  ` `    ``// Inserting array elements in mp``    ``for` `(``int` `i = 0; i < n; i++)``        ``mp.insert({ a[i], i });``  ` `    ``for` `(``int` `i = 0; i < m; i++)``        ``mp.insert({ b[i], i });``    ``cout << ``"The union set of both arrays is :"` `<< endl;``    ``for` `(``auto` `itr = mp.begin(); itr != mp.end(); itr++)``        ``cout << itr->first``             ``<< ``" "``; ``// mp will contain only distinct``                     ``// elements from array a and b``}` `// Driver Code``int` `main()``{``    ``int` `a = { 1, 2, 5, 6, 2, 3, 5 };``    ``int` `b = { 2, 4, 5, 6, 8, 9, 4, 6, 5 };` `    ``printUnion(a, 7, b, 9);``}`

## Java

 `// Java program for the above approach``import` `java.io.*;``import` `java.util.*;` `class` `GFG{` `static` `void` `printUnion(``int``[] a, ``int` `n,``                       ``int``[] b, ``int` `m)``{``    ``Map mp = ``new` `HashMap();``    ` `    ``// Inserting array elements in mp``    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``        ``mp.put(a[i], i);``    ``}``    ``for``(``int` `i = ``0``; i < m; i++)``    ``{``        ``mp.put(b[i], i);``    ``}``    ` `    ``System.out.println(``"The union set of both arrays is :"``);``    ``for``(Map.Entry mapElement : mp.entrySet())``    ``{``        ``System.out.print(mapElement.getKey() + ``" "``);``        ` `        ``// mp will contain only distinct``        ``// elements from array a and b``    ``}``}` `// Driver Code``public` `static` `void` `main (String[] args)``{``    ``int` `a[] = { ``1``, ``2``, ``5``, ``6``, ``2``, ``3``, ``5` `};``    ``int` `b[] = { ``2``, ``4``, ``5``, ``6``, ``8``, ``9``, ``4``, ``6``, ``5` `};``    ` `    ``printUnion(a, ``7``, b, ``9``);``}``}` `// This code is contributed by avanitrachhadiya2155`

Output

```The union set of both arrays is :
1 2 3 4 5 6 8 9```

The above method has time complexity O(m+n).

*This method is suggested by Vinay Verma

Method 2 (Naive)
Union:

1. Initialize union U as empty.
2. Copy all elements of the first array to U.
3. Do the following for every element x of the second array:
1. If x is not present in the first array, then copy x to U.
4. Return U.

Intersection:

1. Initialize intersection I as empty.
2. Do the following for every element x of the first array
1. If x is present in the second array, then copy x to I.
3. Return I.

The time complexity of this method is O(mn) for both operations. Here m and n are numbers of elements in arr1[] and arr2[] respectively.

Method 3 (Use Sorting)

1. Sort arr1[] and arr2[]. This step takes O(mLogm + nLogn) time.
2. Use O(m + n) algorithms to find union and intersection of two sorted arrays.

The overall time complexity of this method is O(mLogm + nLogn).

Method 4 (Use Sorting and Searching)
Union:

1. Initialize union U as empty.
2. Find smaller of m and n and sort the smaller array.
3. Copy the smaller array to U.
4. For every element x of larger array, do the following
1. Binary Search x in the smaller array. If, x is not present, then copy it to U.
5. Return U.

Intersection:

1. Initialize intersection I as empty.
2. Find smaller of m and n and sort the smaller array.
3. For every element x of larger array, do the following
1. Binary Search x in the smaller array. If x is present, then copy it to I.
4. Return I.

Time complexity of this method is min(mLogm + nLogm, mLogn + nLogn) which can also be written as O((m+n)Logm, (m+n)Logn). This approach works much better than the previous approach when the difference between the sizes of two arrays is significant.
Thanks to use_the_force for suggesting this method in a comment here

Below is the implementation of this method.

## C++

 `// A C++ program to print union and intersection``/// of two unsorted arrays``#include ``#include ``using` `namespace` `std;` `int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x);` `// Prints union of arr1[0..m-1] and arr2[0..n-1]``void` `printUnion(``int` `arr1[], ``int` `arr2[], ``int` `m, ``int` `n)``{``    ``// Before finding union, make sure arr1[0..m-1]``    ``// is smaller``    ``if` `(m > n) {``        ``int``* tempp = arr1;``        ``arr1 = arr2;``        ``arr2 = tempp;` `        ``int` `temp = m;``        ``m = n;``        ``n = temp;``    ``}` `    ``// Now arr1[] is smaller` `    ``// Sort the first array and print its elements (these``    ``// two steps can be swapped as order in output is not``    ``// important)``    ``sort(arr1, arr1 + m);``    ``for` `(``int` `i = 0; i < m; i++)``        ``cout << arr1[i] << ``" "``;` `    ``// Search every element of bigger array in smaller array``    ``// and print the element if not found``    ``for` `(``int` `i = 0; i < n; i++)``        ``if` `(binarySearch(arr1, 0, m - 1, arr2[i]) == -1)``            ``cout << arr2[i] << ``" "``;``}` `// Prints intersection of arr1[0..m-1] and arr2[0..n-1]``void` `printIntersection(``int` `arr1[], ``int` `arr2[], ``int` `m, ``int` `n)``{``    ``// Before finding intersection, make sure arr1[0..m-1]``    ``// is smaller``    ``if` `(m > n) {``        ``int``* tempp = arr1;``        ``arr1 = arr2;``        ``arr2 = tempp;` `        ``int` `temp = m;``        ``m = n;``        ``n = temp;``    ``}` `    ``// Now arr1[] is smaller` `    ``// Sort smaller array arr1[0..m-1]``    ``sort(arr1, arr1 + m);` `    ``// Search every element of bigger array in smaller``    ``// array and print the element if found``    ``for` `(``int` `i = 0; i < n; i++)``        ``if` `(binarySearch(arr1, 0, m - 1, arr2[i]) != -1)``            ``cout << arr2[i] << ``" "``;``}` `// A recursive binary search function. It returns``// location of x in given array arr[l..r] is present,``// otherwise -1``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``{``    ``if` `(r >= l) {``        ``int` `mid = l + (r - l) / 2;` `        ``// If the element is present at the middle itself``        ``if` `(arr[mid] == x)``            ``return` `mid;` `        ``// If element is smaller than mid, then it can only``        ``// be present in left subarray``        ``if` `(arr[mid] > x)``            ``return` `binarySearch(arr, l, mid - 1, x);` `        ``// Else the element can only be present in right``        ``// subarray``        ``return` `binarySearch(arr, mid + 1, r, x);``    ``}` `    ``// We reach here when element is not present in array``    ``return` `-1;``}` `/* Driver program to test above function */``int` `main()``{``    ``int` `arr1[] = { 7, 1, 5, 2, 3, 6 };``    ``int` `arr2[] = { 3, 8, 6, 20, 7 };``    ``int` `m = ``sizeof``(arr1) / ``sizeof``(arr1);``    ``int` `n = ``sizeof``(arr2) / ``sizeof``(arr2);``  ` `    ``// Function call``    ``cout << ``"Union of two arrays is n"``;``    ``printUnion(arr1, arr2, m, n);``    ``cout << ``"nIntersection of two arrays is n"``;``    ``printIntersection(arr1, arr2, m, n);``    ``return` `0;``}`

## Java

 `// A Java program to print union and intersection``/// of two unsorted arrays``import` `java.util.Arrays;` `class` `UnionAndIntersection {``    ``// Prints union of arr1[0..m-1] and arr2[0..n-1]``    ``void` `printUnion(``int` `arr1[], ``int` `arr2[], ``int` `m, ``int` `n)``    ``{``        ``// Before finding union, make sure arr1[0..m-1]``        ``// is smaller``        ``if` `(m > n) {``            ``int` `tempp[] = arr1;``            ``arr1 = arr2;``            ``arr2 = tempp;` `            ``int` `temp = m;``            ``m = n;``            ``n = temp;``        ``}` `        ``// Now arr1[] is smaller``        ``// Sort the first array and print its elements``        ``// (these two steps can be swapped as order in``        ``// output is not important)``        ``Arrays.sort(arr1);``        ``for` `(``int` `i = ``0``; i < m; i++)``            ``System.out.print(arr1[i] + ``" "``);` `        ``// Search every element of bigger array in smaller``        ``// array and print the element if not found``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``if` `(binarySearch(arr1, ``0``, m - ``1``, arr2[i]) == -``1``)``                ``System.out.print(arr2[i] + ``" "``);``        ``}``    ``}` `    ``// Prints intersection of arr1[0..m-1] and arr2[0..n-1]``    ``void` `printIntersection(``int` `arr1[], ``int` `arr2[], ``int` `m,``                           ``int` `n)``    ``{``        ``// Before finding intersection, make sure``        ``// arr1[0..m-1] is smaller``        ``if` `(m > n) {``            ``int` `tempp[] = arr1;``            ``arr1 = arr2;``            ``arr2 = tempp;` `            ``int` `temp = m;``            ``m = n;``            ``n = temp;``        ``}` `        ``// Now arr1[] is smaller``        ``// Sort smaller array arr1[0..m-1]``        ``Arrays.sort(arr1);` `        ``// Search every element of bigger array in smaller``        ``// array and print the element if found``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``if` `(binarySearch(arr1, ``0``, m - ``1``, arr2[i]) != -``1``)``                ``System.out.print(arr2[i] + ``" "``);``        ``}``    ``}` `    ``// A recursive binary search function. It returns``    ``// location of x in given array arr[l..r] is present,``    ``// otherwise -1``    ``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``    ``{``        ``if` `(r >= l) {``            ``int` `mid = l + (r - l) / ``2``;` `            ``// If the element is present at the middle``            ``// itself``            ``if` `(arr[mid] == x)``                ``return` `mid;` `            ``// If element is smaller than mid, then it can``            ``// only be present in left subarray``            ``if` `(arr[mid] > x)``                ``return` `binarySearch(arr, l, mid - ``1``, x);` `            ``// Else the element can only be present in right``            ``// subarray``            ``return` `binarySearch(arr, mid + ``1``, r, x);``        ``}` `        ``// We reach here when element is not present in``        ``// array``        ``return` `-``1``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``UnionAndIntersection u_i``            ``= ``new` `UnionAndIntersection();``        ``int` `arr1[] = { ``7``, ``1``, ``5``, ``2``, ``3``, ``6` `};``        ``int` `arr2[] = { ``3``, ``8``, ``6``, ``20``, ``7` `};``        ``int` `m = arr1.length;``        ``int` `n = arr2.length;``      ` `        ``// Function call``        ``System.out.println(``"Union of two arrays is "``);``        ``u_i.printUnion(arr1, arr2, m, n);``        ``System.out.println(``""``);``        ``System.out.println(``            ``"Intersection of two arrays is "``);``        ``u_i.printIntersection(arr1, arr2, m, n);``    ``}``}`

## Python3

 `# A Python3 program to print union and intersection``# of two unsorted arrays` `# Prints union of arr1[0..m-1] and arr2[0..n-1]`  `def` `printUnion(arr1, arr2, m, n):` `    ``# Before finding union, make sure arr1[0..m-1]``    ``# is smaller``    ``if` `(m > n):``        ``tempp ``=` `arr1``        ``arr1 ``=` `arr2``        ``arr2 ``=` `tempp` `        ``temp ``=` `m``        ``m ``=` `n``        ``n ``=` `temp` `    ``# Now arr1[] is smaller` `    ``# Sort the first array and print its elements (these two``    ``# steps can be swapped as order in output is not important)``    ``arr1.sort()``    ``for` `i ``in` `range``(``0``, m):``        ``print``(arr1[i], end``=``" "``)` `    ``# Search every element of bigger array in smaller array``    ``# and print the element if not found``    ``for` `i ``in` `range``(``0``, n):``        ``if` `(binarySearch(arr1, ``0``, m ``-` `1``, arr2[i]) ``=``=` `-``1``):``            ``print``(arr2[i], end``=``" "``)` `# Prints intersection of arr1[0..m-1] and arr2[0..n-1]`  `def` `printIntersection(arr1, arr2, m, n):` `    ``# Before finding intersection, make sure arr1[0..m-1]``    ``# is smaller``    ``if` `(m > n):``        ``tempp ``=` `arr1``        ``arr1 ``=` `arr2``        ``arr2 ``=` `tempp` `        ``temp ``=` `m``        ``m ``=` `n``        ``n ``=` `temp` `    ``# Now arr1[] is smaller` `    ``# Sort smaller array arr1[0..m-1]``    ``arr1.sort()` `    ``# Search every element of bigger array in smaller``    ``# array and print the element if found``    ``for` `i ``in` `range``(``0``, n):``        ``if` `(binarySearch(arr1, ``0``, m ``-` `1``, arr2[i]) !``=` `-``1``):``            ``print``(arr2[i], end``=``" "``)` `# A recursive binary search function. It returns``# location of x in given array arr[l..r] is present,``# otherwise -1`  `def` `binarySearch(arr, l, r, x):` `    ``if` `(r >``=` `l):``        ``mid ``=` `int``(l ``+` `(r ``-` `l)``/``2``)` `        ``# If the element is present at the middle itself``        ``if` `(arr[mid] ``=``=` `x):``            ``return` `mid` `        ``# If element is smaller than mid, then it can only``        ``# be present in left subarray``        ``if` `(arr[mid] > x):``            ``return` `binarySearch(arr, l, mid ``-` `1``, x)` `        ``# Else the element can only be present in right subarray``        ``return` `binarySearch(arr, mid ``+` `1``, r, x)` `    ``# We reach here when element is not present in array``    ``return` `-``1`  `# Driver code``arr1 ``=` `[``7``, ``1``, ``5``, ``2``, ``3``, ``6``]``arr2 ``=` `[``3``, ``8``, ``6``, ``20``, ``7``]``m ``=` `len``(arr1)``n ``=` `len``(arr2)` `# Function call``print``(``"Union of two arrays is "``)``printUnion(arr1, arr2, m, n)``print``(``"\nIntersection of two arrays is "``)``printIntersection(arr1, arr2, m, n)` `# This code is contributed by mits`

## C#

 `// A C# program to print union and``// intersection of two unsorted arrays``using` `System;` `class` `GFG {``    ``// Prints union of arr1[0..m-1] and arr2[0..n-1]``    ``static` `void` `printUnion(``int``[] arr1, ``int``[] arr2, ``int` `m,``                           ``int` `n)``    ``{``        ``// Before finding union, make``        ``// sure arr1[0..m-1] is smaller``        ``if` `(m > n) {``            ``int``[] tempp = arr1;``            ``arr1 = arr2;``            ``arr2 = tempp;` `            ``int` `temp = m;``            ``m = n;``            ``n = temp;``        ``}` `        ``// Now arr1[] is smaller``        ``// Sort the first array and print``        ``// its elements (these two steps can``        ``// be swapped as order in output is``        ``// not important)``        ``Array.Sort(arr1);``        ``for` `(``int` `i = 0; i < m; i++)``            ``Console.Write(arr1[i] + ``" "``);` `        ``// Search every element of bigger``        ``// array in smaller array and print``        ``// the element if not found``        ``for` `(``int` `i = 0; i < n; i++) {``            ``if` `(binarySearch(arr1, 0, m - 1, arr2[i]) == -1)``                ``Console.Write(arr2[i] + ``" "``);``        ``}``    ``}` `    ``// Prints intersection of arr1[0..m-1]``    ``// and arr2[0..n-1]``    ``static` `void` `printIntersection(``int``[] arr1, ``int``[] arr2,``                                  ``int` `m, ``int` `n)``    ``{``        ``// Before finding intersection,``        ``// make sure arr1[0..m-1] is smaller``        ``if` `(m > n) {``            ``int``[] tempp = arr1;``            ``arr1 = arr2;``            ``arr2 = tempp;` `            ``int` `temp = m;``            ``m = n;``            ``n = temp;``        ``}` `        ``// Now arr1[] is smaller``        ``// Sort smaller array arr1[0..m-1]``        ``Array.Sort(arr1);` `        ``// Search every element of bigger array in``        ``// smaller array and print the element if found``        ``for` `(``int` `i = 0; i < n; i++) {``            ``if` `(binarySearch(arr1, 0, m - 1, arr2[i]) != -1)``                ``Console.Write(arr2[i] + ``" "``);``        ``}``    ``}` `    ``// A recursive binary search function.``    ``// It returns location of x in given``    ``// array arr[l..r] is present, otherwise -1``    ``static` `int` `binarySearch(``int``[] arr, ``int` `l, ``int` `r, ``int` `x)``    ``{``        ``if` `(r >= l) {``            ``int` `mid = l + (r - l) / 2;` `            ``// If the element is present at``            ``// the middle itself``            ``if` `(arr[mid] == x)``                ``return` `mid;` `            ``// If element is smaller than mid, then it``            ``// can only be present in left subarray``            ``if` `(arr[mid] > x)``                ``return` `binarySearch(arr, l, mid - 1, x);` `            ``// Else the element can only be``            ``// present in right subarray``            ``return` `binarySearch(arr, mid + 1, r, x);``        ``}` `        ``// We reach here when element is``        ``// not present in array``        ``return` `-1;``    ``}` `    ``// Driver Code``    ``static` `public` `void` `Main()``    ``{``        ``int``[] arr1 = { 7, 1, 5, 2, 3, 6 };``        ``int``[] arr2 = { 3, 8, 6, 20, 7 };``        ``int` `m = arr1.Length;``        ``int` `n = arr2.Length;``      ` `        ``// Function call``        ``Console.WriteLine(``"Union of two arrays is "``);``        ``printUnion(arr1, arr2, m, n);``        ``Console.WriteLine(``""``);``        ``Console.WriteLine(``"Intersection of two arrays is "``);``        ``printIntersection(arr1, arr2, m, n);``    ``}``}` `// This code is contributed``// by Sach_Code`

## PHP

 ` ``\$n``)``    ``{``        ``\$tempp` `= ``\$arr1``;``        ``\$arr1` `= ``\$arr2``;``        ``\$arr2` `= ``\$tempp``;` `        ``\$temp` `= ``\$m``;``        ``\$m` `= ``\$n``;``        ``\$n` `= ``\$temp``;``    ``}` `    ``// Now arr1[] is smaller` `    ``// Sort the first array and print its elements (these two``    ``// steps can be swapped as order in output is not important)``    ``sort(``\$arr1``);``    ``for` `(``\$i` `= 0; ``\$i` `< ``\$m``; ``\$i``++)``        ``echo` `\$arr1``[``\$i``].``" "``;` `    ``// Search every element of bigger array in smaller array``    ``// and print the element if not found``    ``for` `(``\$i` `= 0; ``\$i` `< ``\$n``; ``\$i``++)``        ``if` `(binarySearch(``\$arr1``, 0, ``\$m` `- 1, ``\$arr2``[``\$i``]) == -1)``            ``echo` `\$arr2``[``\$i``].``" "``;``}` `// Prints intersection of arr1[0..m-1] and arr2[0..n-1]``function` `printIntersection(``\$arr1``, ``\$arr2``, ``\$m``, ``\$n``)``{``    ``// Before finding intersection, make sure arr1[0..m-1]``    ``// is smaller``    ``if` `(``\$m` `> ``\$n``)``    ``{``        ``\$tempp` `= ``\$arr1``;``        ``\$arr1` `= ``\$arr2``;``        ``\$arr2` `= ``\$tempp``;` `        ``\$temp` `= ``\$m``;``        ``\$m` `= ``\$n``;``        ``\$n` `= ``\$temp``;``    ``}` `    ``// Now arr1[] is smaller` `    ``// Sort smaller array arr1[0..m-1]``    ``sort(``\$arr1``);` `    ``// Search every element of bigger array in smaller``    ``// array and print the element if found``    ``for` `(``\$i` `= 0; ``\$i` `< ``\$n``; ``\$i``++)``        ``if` `(binarySearch(``\$arr1``, 0, ``\$m` `- 1, ``\$arr2``[``\$i``]) != -1)``            ``echo` `\$arr2``[``\$i``].``" "``;``}` `// A recursive binary search function. It returns``// location of x in given array arr[l..r] is present,``// otherwise -1``function` `binarySearch(``\$arr``, ``\$l``, ``\$r``,``\$x``)``{``    ``if` `(``\$r` `>= ``\$l``)``    ``{``        ``\$mid` `= (int)(``\$l` `+ (``\$r` `- ``\$l``)/2);` `        ``// If the element is present at the middle itself``        ``if` `(``\$arr``[``\$mid``] == ``\$x``) ``return` `\$mid``;` `        ``// If element is smaller than mid, then it can only``        ``// be present in left subarray``        ``if` `(``\$arr``[``\$mid``] > ``\$x``)``        ``return` `binarySearch(``\$arr``, ``\$l``, ``\$mid` `- 1, ``\$x``);` `        ``// Else the element can only be present in right subarray``        ``return` `binarySearch(``\$arr``, ``\$mid` `+ 1, ``\$r``, ``\$x``);``    ``}` `    ``// We reach here when element is not present in array``    ``return` `-1;``}` `/* Driver program to test above function */``    ``\$arr1` `= ``array``(7, 1, 5, 2, 3, 6);``    ``\$arr2` `= ``array``(3, 8, 6, 20, 7);``    ``\$m` `= ``count``(``\$arr1``);``    ``\$n` `= ``count``(``\$arr2``);``    ``echo` `"Union of two arrays is \n"``;``    ``printUnion(``\$arr1``, ``\$arr2``, ``\$m``, ``\$n``);``    ``echo` `"\nIntersection of two arrays is \n"``;``    ``printIntersection(``\$arr1``, ``\$arr2``, ``\$m``, ``\$n``);` `// This code is contributed by mits``?>`

## Javascript

 ``
Output
`Union of two arrays is n3 6 7 8 20 1 5 2 nIntersection of two arrays is n7 3 6`

Another Approach (When elements in the array may not be distinct) :

## C++

 `// C++ code to find intersection when``// elements may not be distinct``#include ` `using` `namespace` `std;` `// Function to find intersection``void` `intersection(``int` `a[], ``int` `b[], ``int` `n, ``int` `m)``{``    ``int` `i = 0, j = 0;``    ``while` `(i < n && j < m) {``        ``if` `(a[i] > b[j]) {``            ``j++;``        ``}``        ``else` `if` `(b[j] > a[i]) {``            ``i++;``        ``}``        ``else` `{``            ` `            ``// when both are equal``            ``cout << a[i] << ``" "``;``            ``i++;``            ``j++;``        ``}``    ``}``}` `// Driver Code``int` `main()``{``    ``int` `a[] = { 1, 3, 2, 3, 3, 4, 5, 5, 6 };``    ``int` `b[] = { 3, 3, 5 };` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a);``    ``int` `m = ``sizeof``(b) / ``sizeof``(b);``  ` `    ``// sort``    ``sort(a, a + n);``    ``sort(b, b + m);``  ` `    ``// Function call``    ``intersection(a, b, n, m);``}`

## Java

 `// Java code to find intersection when``// elements may not be distinct` `import` `java.io.*;``import` `java.util.Arrays;` `class` `GFG {` `    ``// Function to find intersection``    ``static` `void` `intersection(``int` `a[], ``int` `b[], ``int` `n, ``int` `m)``    ``{``        ``int` `i = ``0``, j = ``0``;` `        ``while` `(i < n && j < m) {` `            ``if` `(a[i] > b[j]) {``                ``j++;``            ``}` `            ``else` `if` `(b[j] > a[i]) {``                ``i++;``            ``}``            ``else` `{``                ``// when both are equal``                ``System.out.print(a[i] + ``" "``);``                ``i++;``                ``j++;``            ``}``        ``}``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `a[] = { ``1``, ``3``, ``2``, ``3``, ``4``, ``5``, ``5``, ``6` `};``        ``int` `b[] = { ``3``, ``3``, ``5` `};` `        ``int` `n = a.length;``        ``int` `m = b.length;``      ` `        ``// sort``        ``Arrays.sort(a);``        ``Arrays.sort(b);``      ` `        ``// Function call``        ``intersection(a, b, n, m);``    ``}``}`

## Python3

 `# Python 3 code to find intersection``# when elements may not be distinct` `# Function to find intersection`  `def` `intersection(a, b, n, m):` `    ``i ``=` `0``    ``j ``=` `0` `    ``while` `(i < n ``and` `j < m):` `        ``if` `(a[i] > b[j]):``            ``j ``+``=` `1` `        ``else``:``            ``if` `(b[j] > a[i]):``                ``i ``+``=` `1` `            ``else``:``                ``# when both are equal``                ``print``(a[i], end``=``" "``)``                ``i ``+``=` `1``                ``j ``+``=` `1`  `# Driver Code``if` `__name__ ``=``=` `"__main__"``:` `    ``a ``=` `[``1``, ``3``, ``2``, ``3``, ``4``, ``5``, ``5``, ``6``]``    ``b ``=` `[``3``, ``3``, ``5``]` `    ``n ``=` `len``(a)``    ``m ``=` `len``(b)``    ` `    ``# sort``    ``a.sort()``    ``b.sort()``    ` `    ``# function call``    ``intersection(a, b, n, m)` `# This code is contributed by Ita_c`

## C#

 `// C# code to find intersection when``// elements may not be distinct` `using` `System;` `class` `GFG {` `    ``// Function to find intersection``    ``static` `void` `intersection(``int``[] a, ``int``[] b, ``int` `n, ``int` `m)``    ``{``        ``int` `i = 0, j = 0;` `        ``while` `(i < n && j < m) {` `            ``if` `(a[i] > b[j]) {``                ``j++;``            ``}` `            ``else` `if` `(b[j] > a[i]) {``                ``i++;``            ``}``            ``else` `{``                ``// when both are equal``                ``Console.Write(a[i] + ``" "``);``                ``i++;``                ``j++;``            ``}``        ``}``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{``        ``int``[] a = { 1, 3, 2, 3, 4, 5, 5, 6 };``        ``int``[] b = { 3, 3, 5 };` `        ``int` `n = a.Length;``        ``int` `m = b.Length;``      ` `        ``// sort``        ``Array.Sort(a);``        ``Array.Sort(b);``      ` `        ``// Function call``        ``intersection(a, b, n, m);``    ``}``}``// this code is contributed by mukul singh`

## PHP

 ` ``\$b``[``\$j``])``        ``{``            ``\$j``++;``        ``}``                ` `        ``else``        ``if` `(``\$b``[``\$j``] > ``\$a``[``\$i``])``        ``{``            ``\$i``++;``        ``}``        ``else``        ``{``            ``// when both are equal``            ``echo``(``\$a``[``\$i``] . ``" "``);``            ``\$i``++;``            ``\$j``++;``        ``}``    ``}``}` `// Driver Code``\$a` `= ``array``(1, 3, 2, 3, 4, 5, 5, 6);``\$b` `= ``array``(3, 3, 5);` `\$n` `= sizeof(``\$a``);``\$m` `= sizeof(``\$b``);` `// sort``sort(``\$a``);``sort(``\$b``);` `// Function call``intersection(``\$a``, ``\$b``, ``\$n``, ``\$m``);` `// This code is contributed``// by Mukul Singh``?>`

## Javascript

 ``
Output
`3 3 5`

Thanks Sanny Kumar for suggesting the above method.

Method 5 (Use Hashing)
Union

1. Initialize an empty hash set hs.
2. Iterate through the first array and put every element of the first array in the set S.
3. Repeat the process for the second array.
4. Print the set hs.

Intersection

1. Initialize an empty set hs.
2. Iterate through the first array and put every element of the first array in the set S.
3. For every element x of the second array, do the following :

Search x in the set hs. If x is present, then print it. Time complexity of this method is ?(m+n) under the assumption that hash table search and insert operations take ?(1) time.
Below is the implementation of the above idea:

## C++

 `// CPP program to find union and intersection``// using sets``#include ``using` `namespace` `std;` `// Prints union of arr1[0..n1-1] and arr2[0..n2-1]``void` `printUnion(``int` `arr1[], ``int` `arr2[], ``int` `n1, ``int` `n2)``{``    ``set<``int``> hs;` `    ``// Insert the elements of arr1[] to set hs``    ``for` `(``int` `i = 0; i < n1; i++)``        ``hs.insert(arr1[i]);` `    ``// Insert the elements of arr2[] to set hs``    ``for` `(``int` `i = 0; i < n2; i++)``        ``hs.insert(arr2[i]);` `    ``// Print the content of set hs``    ``for` `(``auto` `it = hs.begin(); it != hs.end(); it++)``        ``cout << *it << ``" "``;``    ``cout << endl;``}` `// Prints intersection of arr1[0..n1-1] and``// arr2[0..n2-1]``void` `printIntersection(``int` `arr1[], ``int` `arr2[], ``int` `n1,``                       ``int` `n2)``{``    ``set<``int``> hs;` `    ``// Insert the elements of arr1[] to set S``    ``for` `(``int` `i = 0; i < n1; i++)``        ``hs.insert(arr1[i]);` `    ``for` `(``int` `i = 0; i < n2; i++)` `        ``// If element is present in set then``        ``// push it to vector V``        ``if` `(hs.find(arr2[i]) != hs.end())``            ``cout << arr2[i] << ``" "``;``}` `// Driver Program``int` `main()``{``    ``int` `arr1[] = { 7, 1, 5, 2, 3, 6 };``    ``int` `arr2[] = { 3, 8, 6, 20, 7 };``    ``int` `n1 = ``sizeof``(arr1) / ``sizeof``(arr1);``    ``int` `n2 = ``sizeof``(arr2) / ``sizeof``(arr2);` `    ``// Function call``    ``printUnion(arr1, arr2, n1, n2);``    ``printIntersection(arr1, arr2, n1, n2);` `    ``return` `0;``}`

## Java

 `// Java program to find union and intersection``// using Hashing``import` `java.util.HashSet;` `class` `Test {``    ``// Prints union of arr1[0..m-1] and arr2[0..n-1]``    ``static` `void` `printUnion(``int` `arr1[], ``int` `arr2[])``    ``{``        ``HashSet hs = ``new` `HashSet<>();` `        ``for` `(``int` `i = ``0``; i < arr1.length; i++)``            ``hs.add(arr1[i]);``        ``for` `(``int` `i = ``0``; i < arr2.length; i++)``            ``hs.add(arr2[i]);``        ``System.out.println(hs);``    ``}` `    ``// Prints intersection of arr1[0..m-1] and arr2[0..n-1]``    ``static` `void` `printIntersection(``int` `arr1[], ``int` `arr2[])``    ``{``        ``HashSet hs = ``new` `HashSet<>();``        ``HashSet hs1 = ``new` `HashSet<>();` `        ``for` `(``int` `i = ``0``; i < arr1.length; i++)``            ``hs.add(arr1[i]);` `        ``for` `(``int` `i = ``0``; i < arr2.length; i++)``            ``if` `(hs.contains(arr2[i]))``                ``System.out.print(arr2[i] + ``" "``);``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr1[] = { ``7``, ``1``, ``5``, ``2``, ``3``, ``6` `};``        ``int` `arr2[] = { ``3``, ``8``, ``6``, ``20``, ``7` `};` `        ``// Function call``        ``System.out.println(``"Union of two arrays is : "``);``        ``printUnion(arr1, arr2);` `        ``System.out.println(``            ``"Intersection of two arrays is : "``);``        ``printIntersection(arr1, arr2);``    ``}``}`

## Python

 `# Python program to find union and intersection``# using sets`  `def` `printUnion(arr1, arr2, n1, n2):``    ``hs ``=` `set``()` `    ``# Insert the elements of arr1[] to set hs``    ``for` `i ``in` `range``(``0``, n1):``        ``hs.add(arr1[i])` `    ``# Insert the elements of arr1[] to set hs``    ``for` `i ``in` `range``(``0``, n2):``        ``hs.add(arr2[i])``    ``print``(``"Union:"``)``    ``for` `i ``in` `hs:``        ``print``(i, end``=``" "``)``    ``print``(``"\n"``)` `    ``# Prints intersection of arr1[0..n1-1] and``    ``# arr2[0..n2-1]`  `def` `printIntersection(arr1, arr2, n1, n2):``    ``hs ``=` `set``()` `    ``# Insert the elements of arr1[] to set S``    ``for` `i ``in` `range``(``0``, n1):``        ``hs.add(arr1[i])``    ``print``(``"Intersection:"``)``    ``for` `i ``in` `range``(``0``, n2):` `        ``# If element is present in set then``        ``# push it to vector V``        ``if` `arr2[i] ``in` `hs:``            ``print``(arr2[i], end``=``" "``)`  `# Driver Program``arr1 ``=` `[``7``, ``1``, ``5``, ``2``, ``3``, ``6``]``arr2 ``=` `[``3``, ``8``, ``6``, ``20``, ``7``]``n1 ``=` `len``(arr1)``n2 ``=` `len``(arr2)` `# Function call``printUnion(arr1, arr2, n1, n2)``printIntersection(arr1, arr2, n1, n2)` `# This artice is contributed by Kumar Suman .`

## C#

 `// C# program to find union and intersection``// using Hashing``using` `System;``using` `System.Linq;``using` `System.Collections.Generic;` `class` `GFG``{``    ``// Prints union of arr1[0..m-1] and arr2[0..n-1]``    ``static` `void` `printUnion(``int` `[]arr1, ``int` `[]arr2)``    ``{``        ``HashSet<``int``> hs = ``new` `HashSet<``int``>();``        ` `        ``for` `(``int` `i = 0; i < arr1.Length; i++)``            ``hs.Add(arr1[i]);    ``        ``for` `(``int` `i = 0; i < arr2.Length; i++)``            ``hs.Add(arr2[i]);``    ` `            ``Console.WriteLine(``string``.Join(``", "``, hs));    ``    ``}``    ` `    ``// Prints intersection of arr1[0..m-1] and arr2[0..n-1]``    ``static` `void` `printIntersection(``int` `[]arr1, ``int` `[]arr2)``    ``{``        ``HashSet<``int``> hs = ``new` `HashSet<``int``>();``        ` `        ``for` `(``int` `i = 0; i < arr1.Length; i++)``            ``hs.Add(arr1[i]);``        ` `        ``for` `(``int` `i = 0; i < arr2.Length; i++)``            ``if` `(hs.Contains(arr2[i]))``            ``Console.Write(arr2[i] + ``" "``);``    ``}``    ` `    ``// Driver Code``    ``static` `void` `Main()``    ``{``        ``int` `[]arr1 = {7, 1, 5, 2, 3, 6};``        ``int` `[]arr2 = {3, 8, 6, 20, 7};` `        ``Console.WriteLine(``"Union of two arrays is : "``);``        ``printUnion(arr1, arr2);``    ` `        ``Console.WriteLine(``"\nIntersection of two arrays is : "``);``        ``printIntersection(arr1, arr2);``    ``}``}` `// This code is contributed by mits`
Output
```1 2 3 5 6 7 8 20
3 6 7```

This method is contributed by Ankur Singh.

Method 6 (Kind of hashing technique without using any predefined Java Collections)

1. Initialize array with size of m+n
2. Fill first array value in resultant array by doing hashing(to find appropriate position)
3. Repeat for second array
4. While doing hashing if collision happens increment the position in recursive way

Below is the implementation of the above code:

## Java

 `// Java program to find union and intersection``// using similar Hashing Technique``// without using any predefined Java Collections``// Time Complexity best case & avg case = O(m+n)``// Worst case = O(nlogn)` `// package com.arrays.math;` `public` `class` `UnsortedIntersectionUnion {` `    ``// Prints intersection of arr1[0..n1-1] and``    ``// arr2[0..n2-1]``    ``public` `void` `findPosition(``int` `a[], ``int` `b[])``    ``{``        ``int` `v = (a.length + b.length);``        ``int` `ans[] = ``new` `int``[v];` `        ``int` `zero1 = ``0``;``        ``int` `zero2 = ``0``;` `        ``System.out.print(``"Intersection : "``);``        ``// Iterate first array``        ``for` `(``int` `i = ``0``; i < a.length; i++)``            ``zero1 = iterateArray(a, v, ans, i);` `        ``// Iterate second array``        ``for` `(``int` `j = ``0``; j < b.length; j++)``            ``zero2 = iterateArray(b, v, ans, j);` `        ``int` `zero = zero1 + zero2;``        ``placeZeros(v, ans, zero);``        ``printUnion(v, ans, zero);``    ``}` `    ``// Prints union of arr1[0..n1-1] and arr2[0..n2-1]``    ``private` `void` `printUnion(``int` `v, ``int``[] ans, ``int` `zero)``    ``{``        ``int` `zero1 = ``0``;``        ``System.out.print(``"\nUnion : "``);``        ``for` `(``int` `i = ``0``; i < v; i++) {``            ``if` `((zero == ``0` `&& ans[i] == ``0``)``                ``|| (ans[i] == ``0` `&& zero1 > ``0``))``                ``continue``;``            ``if` `(ans[i] == ``0``)``                ``zero1++;``            ``System.out.print(ans[i] + ``","``);``        ``}``    ``}` `    ``private` `void` `placeZeros(``int` `v, ``int``[] ans, ``int` `zero)``    ``{``        ``if` `(zero == ``2``) {``            ``System.out.println(``"0"``);``            ``int` `d[] = { ``0` `};``            ``placeValue(d, ans, ``0``, ``0``, v);``        ``}``        ``if` `(zero == ``1``) {``            ``int` `d[] = { ``0` `};``            ``placeValue(d, ans, ``0``, ``0``, v);``        ``}``    ``}` `    ``// Function to iterate array``    ``private` `int` `iterateArray(``int``[] a, ``int` `v, ``int``[] ans,``                             ``int` `i)``    ``{``        ``if` `(a[i] != ``0``) {``            ``int` `p = a[i] % v;``            ``placeValue(a, ans, i, p, v);``        ``}``        ``else``            ``return` `1``;``        ``return` `0``;``    ``}` `    ``private` `void` `placeValue(``int``[] a, ``int``[] ans, ``int` `i,``                            ``int` `p, ``int` `v)``    ``{``        ``p = p % v;``        ``if` `(ans[p] == ``0``)``            ``ans[p] = a[i];``        ``else` `{``            ``if` `(ans[p] == a[i])``                ``System.out.print(a[i] + ``","``);``            ``else` `{` `                ``// Hashing collision happened increment``                ``// position and do recursive call``                ``p = p + ``1``;``                ``placeValue(a, ans, i, p, v);``            ``}``        ``}``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `a[] = { ``7``, ``1``, ``5``, ``2``, ``3``, ``6` `};``        ``int` `b[] = { ``3``, ``8``, ``6``, ``20``, ``7` `};` `        ``// Function call``        ``UnsortedIntersectionUnion uiu``            ``= ``new` `UnsortedIntersectionUnion();``        ``uiu.findPosition(a, b);``    ``}``}``// This code is contributed by Mohanakrishnan S.`

## Python3

 `# Python3 program to find union and intersection``# using similar Hashing Technique``# without using any predefined Java Collections``# Time Complexity best case & avg case = O(m+n)``# Worst case = O(nlogn)`  `# Prints intersection of arr1[0..n1-1] and``# arr2[0..n2-1]``def` `findPosition(a, b):``    ``v ``=` `len``(a) ``+` `len``(b);``    ``ans ``=` `[``0``]``*``v;``    ``zero1 ``=` `zero2 ``=` `0``;``    ``print``(``"Intersection :"``,end``=``" "``);``    ` `    ``# Iterate first array``    ``for` `i ``in` `range``(``len``(a)):``        ``zero1 ``=` `iterateArray(a, v, ans, i);``    ` `    ``# Iterate second array``    ``for` `j ``in` `range``(``len``(b)):``        ``zero2 ``=` `iterateArray(b, v, ans, j);``    ` `    ``zero ``=` `zero1 ``+` `zero2;``    ``placeZeros(v, ans, zero);``    ``printUnion(v, ans, zero);``    ` `# Prints union of arr1[0..n1-1] and arr2[0..n2-1]``def` `printUnion(v, ans,zero):``    ``zero1 ``=` `0``;``    ``print``(``"\nUnion :"``,end``=``" "``);``    ``for` `i ``in` `range``(v):``        ``if` `((zero ``=``=` `0` `and` `ans[i] ``=``=` `0``) ``or``            ``(ans[i] ``=``=` `0` `and` `zero1 > ``0``)):``            ``continue``;``        ``if` `(ans[i] ``=``=` `0``):``            ``zero1``+``=``1``;``        ``print``(ans[i],end``=``","``);` `def` `placeZeros(v, ans, zero):``    ``if` `(zero ``=``=` `2``):``        ``print``(``"0"``);``        ``d ``=` `[``0``];``        ``placeValue(d, ans, ``0``, ``0``, v);``    ``if` `(zero ``=``=` `1``):``        ``d``=``[``0``];``        ``placeValue(d, ans, ``0``, ``0``, v);` `# Function to iterate array``def` `iterateArray(a,v,ans,i):``    ``if` `(a[i] !``=` `0``):``        ``p ``=` `a[i] ``%` `v;``        ``placeValue(a, ans, i, p, v);``    ``else``:``        ``return` `1``;``    ` `    ``return` `0``;` `def` `placeValue(a,ans,i,p,v):``    ``p ``=` `p ``%` `v;``    ``if` `(ans[p] ``=``=` `0``):``        ``ans[p] ``=` `a[i];``    ``else``:``        ``if` `(ans[p] ``=``=` `a[i]):``            ``print``(a[i],end``=``","``);``        ``else``:``            ``# Hashing collision happened increment``            ``# position and do recursive call``            ``p ``=` `p ``+` `1``;``            ``placeValue(a, ans, i, p, v);` `# Driver code``a ``=` `[ ``7``, ``1``, ``5``, ``2``, ``3``, ``6` `];``b ``=` `[ ``3``, ``8``, ``6``, ``20``, ``7` `];``findPosition(a, b);` `# This code is contributed by mits`

## C#

 `// C# program to find union and intersection``// using similar Hashing Technique``// without using any predefined Java Collections``// Time Complexity best case & avg case = O(m+n)``// Worst case = O(nlogn)` `//package com.arrays.math;``using` `System;``class` `UnsortedIntersectionUnion``{` `        ``// Prints intersection of arr1[0..n1-1] and``        ``// arr2[0..n2-1]``    ``public` `void` `findPosition(``int` `[]a, ``int` `[]b)``    ``{``        ``int` `v = (a.Length + b.Length);``        ``int` `[]ans = ``new` `int``[v];` `        ``int` `zero1 = 0;``        ``int` `zero2 = 0;` `        ``Console.Write(``"Intersection : "``);``        ` `        ``// Iterate first array``        ``for` `(``int` `i = 0; i < a.Length; i++)``            ``zero1 = iterateArray(a, v, ans, i);` `        ``// Iterate second array``        ``for` `(``int` `j = 0; j < b.Length; j++)``            ``zero2 = iterateArray(b, v, ans, j);` `        ``int` `zero = zero1 + zero2;``        ``placeZeros(v, ans, zero);``        ``printUnion(v, ans, zero);` `    ``}``    ` `    ``// Prints union of arr1[0..n1-1]``    ``// and arr2[0..n2-1]``    ``private` `void` `printUnion(``int` `v, ``int``[] ans, ``int` `zero)``    ``{``        ``int` `zero1 = 0;``        ``Console.Write(``"\nUnion : "``);``        ``for` `(``int` `i = 0; i < v; i++)``        ``{``            ``if` `((zero == 0 && ans[i] == 0) ||``                    ``(ans[i] == 0 && zero1 > 0))``                ``continue``;``            ``if` `(ans[i] == 0)``                ``zero1++;``            ``Console.Write(ans[i] + ``","``);``        ``}``    ``}` `    ``private` `void` `placeZeros(``int` `v, ``int``[] ans, ``int` `zero)``    ``{``        ``if` `(zero == 2)``        ``{``            ``Console.WriteLine(``"0"``);``            ``int` `[]d = { 0 };``            ``placeValue(d, ans, 0, 0, v);``        ``}``        ``if` `(zero == 1)``        ``{``            ``int` `[]d = { 0 };``            ``placeValue(d, ans, 0, 0, v);``        ``}``    ``}` `    ``// Function to iterate array``    ``private` `int` `iterateArray(``int``[] a, ``int` `v,``                            ``int``[] ans, ``int` `i)``    ``{``        ``if` `(a[i] != 0)``        ``{``            ``int` `p = a[i] % v;``            ``placeValue(a, ans, i, p, v);``        ``} ``else``            ``return` `1;``        ``return` `0;``    ``}` `    ``private` `void` `placeValue(``int``[] a, ``int``[] ans,``                                ``int` `i, ``int` `p, ``int` `v)``    ``{``        ``p = p % v;``        ``if` `(ans[p] == 0)``            ``ans[p] = a[i];``        ``else` `{``            ``if` `(ans[p] == a[i])``                ``Console.Write(a[i] + ``","``);``            ``else``            ``{``                ` `                ``//Hashing collision happened increment``                ``// position and do recursive call``                ``p = p + 1;``                ``placeValue(a, ans, i, p, v);``            ``}``        ``}``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]a = { 7, 1, 5, 2, 3, 6 };``        ``int` `[]b = { 3, 8, 6, 20, 7 };` `        ``UnsortedIntersectionUnion uiu = ``new` `UnsortedIntersectionUnion();``        ``uiu.findPosition(a, b);``    ``}``}` `// This code is contributed by PrinciRaj1992`
Output
```Intersection : 3,6,7,
Union : 1,2,3,5,6,7,8,20,```

## Python3

 `#  Python program to find union and intersection``#  using sets`  `def` `printUnion(arr1, arr2, n1, n2):``    ``hs ``=` `set``()``    ``#  Inhsert the elements of arr1[] to set hs``    ``for` `i ``in` `range``(``0``, n1):``        ``hs.add(arr1[i])``    ``#  Inhsert the elements of arr1[] to set hs``    ``for` `i ``in` `range``(``0``, n2):``        ``hs.add(arr2[i])``    ``print``(``"Union:"``)``    ``for` `i ``in` `hs:``        ``print``(i, end``=``" "``)``    ``print``(``"\n"``)``    ``#  Prints intersection of arr1[0..n1-1] and``    ``#  arr2[0..n2-1]`  `def` `printIntersection(arr1, arr2, n1, n2):``    ``hs ``=` `set``()``    ``#  Insert the elements of arr1[] to set S``    ``for` `i ``in` `range``(``0``, n1):``        ``hs.add(arr1[i])``    ``print``(``"Intersection:"``)``    ``for` `i ``in` `range``(``0``, n2):``        ``#  If element is present in set then``        ``#  push it to vector V``        ``if` `arr2[i] ``in` `hs:``            ``print``(arr2[i], end``=``" "``)`  `#  Driver Program``arr1 ``=` `[``7``, ``1``, ``5``, ``2``, ``3``, ``6``]``arr2 ``=` `[``3``, ``8``, ``6``, ``20``, ``7``]``n1 ``=` `len``(arr1)``n2 ``=` `len``(arr2)` `# Function call``printUnion(arr1, arr2, n1, n2)``printIntersection(arr1, arr2, n1, n2)` `# This code is contributed by Kumar Suman .`

See following post for sorted arrays.
Find Union and Intersection of two sorted arrays

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up