Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find two numbers from their sum and XOR | Set 2

  • Difficulty Level : Medium
  • Last Updated : 19 Nov, 2021

Given two integers X and Y, the task is to find the two integers having sum X and Bitwise XOR equal to Y.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: X = 17, Y = 13
Output: 2 15
Explanation: 2 + 15 = 17 and 2 ^ 15 = 13



Input: X = 1870807699, Y = 259801747
Output: 805502976 1065304723

Naive Approach: Refer to the previous post of this article for the simplest approach to solve the problem. 

Time Complexity: O(log N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on the following observations:

A + B = (A ^ B) + 2 * (A & B)
=> X = Y + 2 * (A & B)

While calculating sum, if both bits are 1(i.e., AND is 1), the resultant bit is 0, and 1 is added as carry, which means every bit in AND is left-shifted by 1, i.e. value of AND is multiplied by 2 and added.

Rearranging the terms, the expression (A&B) = (X – Y) / 2 is obtained.

This verifies the above observation. 
 

There exist the following cases:

  • If X < Y: In this case, the solution does not exist because (A & B) becomes negative which is not possible.
  • If X – Y is odd: In this case, the solution does not exist because (X – Y) is not divisible by 2.
  • If X = Y: In this case, A & B = 0. Therefore, the minimum value of A should be 0 and the value of B should be Y to satisfy the given equations.
  • Otherwise: A&B = (X – Y)/2 is satisfied, only when ((X – Y)/2) & Y equals 0. If true, the A = (X – Y)/2 and B = A + Y. Otherwise, A = -1 and B = -1.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the value of A and
// B whose sum is X and xor is Y
void findNums(int X, int Y)
{
 
    // Initialize the two numbers
    int A, B;
 
    // Case 1: X < Y
    if (X < Y) {
        A = -1;
        B = -1;
    }
 
    // Case 2: X-Y is odd
    else if (abs(X - Y) & 1) {
        A = -1;
        B = -1;
    }
 
    // Case 3: If both Sum and XOR
    // are equal
    else if (X == Y) {
        A = 0;
        B = Y;
    }
 
    // Case 4: If above cases fails
    else {
 
        // Update the value of A
        A = (X - Y) / 2;
 
        // Check if A & Y value is 0
        if ((A & Y) == 0) {
 
            // If true, update B
            B = (A + Y);
        }
 
        // Otherwise assign -1 to A,
        // -1 to B
        else {
            A = -1;
            B = -1;
        }
    }
 
    // Print the numbers A and B
    cout << A << " " << B;
}
 
// Driver Code
int main()
{
    // Given Sum and XOR of 2 numbers
    int X = 17, Y = 13;
 
    // Function Call
    findNums(X, Y);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
    
class GFG{
    
// Function to find the value of A and
// B whose sum is X and xor is Y
static void findNums(int X, int Y)
{
     
    // Initialize the two numbers
    int A, B;
  
    // Case 1: X < Y
    if (X < Y)
    {
        A = -1;
        B = -1;
    }
  
    // Case 2: X-Y is odd
    else if (((Math.abs(X - Y)) & 1) != 0)
    {
        A = -1;
        B = -1;
    }
  
    // Case 3: If both Sum and XOR
    // are equal
    else if (X == Y)
    {
        A = 0;
        B = Y;
    }
  
    // Case 4: If above cases fails
    else
    {
         
        // Update the value of A
        A = (X - Y) / 2;
  
        // Check if A & Y value is 0
        if ((A & Y) == 0)
        {
             
            // If true, update B
            B = (A + Y);
        }
  
        // Otherwise assign -1 to A,
        // -1 to B
        else
        {
            A = -1;
            B = -1;
        }
    }
  
    // Print the numbers A and B
    System.out.print(A + " " + B);
}
    
// Driver Code
public static void main(String[] args)
{
     
    // Given Sum and XOR of 2 numbers
    int X = 17, Y = 13;
  
    // Function Call
    findNums(X, Y);
}
}
 
// This code is contributed by susmitakundugoaldanga

Python




# Python program for the above approach
 
# Function to find the value of A and
# B whose sum is X and xor is Y
def findNums(X, Y):
   
    # Initialize the two numbers
    A = 0;
    B = 0;
 
    # Case 1: X < Y
    if (X < Y):
        A = -1;
        B = -1;
 
    # Case 2: X-Y is odd
    elif (((abs(X - Y)) & 1) != 0):
        A = -1;
        B = -1;
 
    # Case 3: If both Sum and XOR
    # are equal
    elif (X == Y):
        A = 0;
        B = Y;
 
    # Case 4: If above cases fails
    else:
 
        # Update the value of A
        A = (X - Y) // 2;
 
        # Check if A & Y value is 0
        if ((A & Y) == 0):
 
            # If True, update B
            B = (A + Y);
 
        # Otherwise assign -1 to A,
        # -1 to B
        else:
            A = -1;
            B = -1;
 
    # Print the numbers A and B
    print A;
    print B;
 
# Driver Code
if __name__ == '__main__':
   
    # Given Sum and XOR of 2 numbers
    X = 17;
    Y = 13;
 
    # Function Call
    findNums(X, Y);
 
# This code is contributed by shikhasingrajput

C#




// C# program for the above approach
using System;
 
class GFG{
    
// Function to find the value of A and
// B whose sum is X and xor is Y
static void findNums(int X, int Y)
{
     
    // Initialize the two numbers
    int A, B;
  
    // Case 1: X < Y
    if (X < Y)
    {
        A = -1;
        B = -1;
    }
  
    // Case 2: X-Y is odd
    else if (((Math.Abs(X - Y)) & 1) != 0)
    {
        A = -1;
        B = -1;
    }
  
    // Case 3: If both Sum and XOR
    // are equal
    else if (X == Y)
    {
        A = 0;
        B = Y;
    }
  
    // Case 4: If above cases fails
    else
    {
         
        // Update the value of A
        A = (X - Y) / 2;
  
        // Check if A & Y value is 0
        if ((A & Y) == 0)
        {
             
            // If true, update B
            B = (A + Y);
        }
  
        // Otherwise assign -1 to A,
        // -1 to B
        else
        {
            A = -1;
            B = -1;
        }
    }
  
    // Print the numbers A and B
    Console.Write(A + " " + B);
}
    
// Driver Code
public static void Main(String[] args)
{
     
    // Given Sum and XOR of 2 numbers
    int X = 17, Y = 13;
     
    // Function Call
    findNums(X, Y);
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// JavaScript program to implement the above approach
 
// Function to find the value of A and
// B whose sum is X and xor is Y
function findNums(X, Y)
{
 
    // Initialize the two numbers
    let A, B;
 
    // Case 1: X < Y
    if (X < Y) {
        A = -1;
        B = -1;
    }
 
    // Case 2: X-Y is odd
    else if (Math.abs(X - Y) & 1) {
        A = -1;
        B = -1;
    }
 
    // Case 3: If both Sum and XOR
    // are equal
    else if (X == Y) {
        A = 0;
        B = Y;
    }
 
    // Case 4: If above cases fails
    else {
 
        // Update the value of A
        A = (X - Y) / 2;
 
        // Check if A & Y value is 0
        if ((A & Y) == 0) {
 
            // If true, update B
            B = (A + Y);
        }
 
        // Otherwise assign -1 to A,
        // -1 to B
        else {
            A = -1;
            B = -1;
        }
    }
 
    // Print the numbers A and B
    document.write(A + " " + B);
}
 
// Driver Code
 
    // Given Sum and XOR of 2 numbers
    let X = 17, Y = 13;
 
    // Function Call
    findNums(X, Y);
 
</script>
Output: 
2 15

 

Time Complexity: O(1)
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!