# Find two numbers from their sum and XOR | Set 2

• Difficulty Level : Medium
• Last Updated : 19 Nov, 2021

Given two integers X and Y, the task is to find the two integers having sum X and Bitwise XOR equal to Y.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: X = 17, Y = 13
Output: 2 15
Explanation: 2 + 15 = 17 and 2 ^ 15 = 13

Input: X = 1870807699, Y = 259801747
Output: 805502976 1065304723

Naive Approach: Refer to the previous post of this article for the simplest approach to solve the problem.

Time Complexity: O(log N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on the following observations:

A + B = (A ^ B) + 2 * (A & B)
=> X = Y + 2 * (A & B)

While calculating sum, if both bits are 1(i.e., AND is 1), the resultant bit is 0, and 1 is added as carry, which means every bit in AND is left-shifted by 1, i.e. value of AND is multiplied by 2 and added.

Rearranging the terms, the expression (A&B) = (X – Y) / 2 is obtained.

This verifies the above observation.

There exist the following cases:

• If X < Y: In this case, the solution does not exist because (A & B) becomes negative which is not possible.
• If X – Y is odd: In this case, the solution does not exist because (X – Y) is not divisible by 2.
• If X = Y: In this case, A & B = 0. Therefore, the minimum value of A should be 0 and the value of B should be Y to satisfy the given equations.
• Otherwise: A&B = (X – Y)/2 is satisfied, only when ((X – Y)/2) & Y equals 0. If true, the A = (X – Y)/2 and B = A + Y. Otherwise, A = -1 and B = -1.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to find the value of A and``// B whose sum is X and xor is Y``void` `findNums(``int` `X, ``int` `Y)``{` `    ``// Initialize the two numbers``    ``int` `A, B;` `    ``// Case 1: X < Y``    ``if` `(X < Y) {``        ``A = -1;``        ``B = -1;``    ``}` `    ``// Case 2: X-Y is odd``    ``else` `if` `(``abs``(X - Y) & 1) {``        ``A = -1;``        ``B = -1;``    ``}` `    ``// Case 3: If both Sum and XOR``    ``// are equal``    ``else` `if` `(X == Y) {``        ``A = 0;``        ``B = Y;``    ``}` `    ``// Case 4: If above cases fails``    ``else` `{` `        ``// Update the value of A``        ``A = (X - Y) / 2;` `        ``// Check if A & Y value is 0``        ``if` `((A & Y) == 0) {` `            ``// If true, update B``            ``B = (A + Y);``        ``}` `        ``// Otherwise assign -1 to A,``        ``// -1 to B``        ``else` `{``            ``A = -1;``            ``B = -1;``        ``}``    ``}` `    ``// Print the numbers A and B``    ``cout << A << ``" "` `<< B;``}` `// Driver Code``int` `main()``{``    ``// Given Sum and XOR of 2 numbers``    ``int` `X = 17, Y = 13;` `    ``// Function Call``    ``findNums(X, Y);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.util.*;``   ` `class` `GFG{``   ` `// Function to find the value of A and``// B whose sum is X and xor is Y``static` `void` `findNums(``int` `X, ``int` `Y)``{``    ` `    ``// Initialize the two numbers``    ``int` `A, B;`` ` `    ``// Case 1: X < Y``    ``if` `(X < Y)``    ``{``        ``A = -``1``;``        ``B = -``1``;``    ``}`` ` `    ``// Case 2: X-Y is odd``    ``else` `if` `(((Math.abs(X - Y)) & ``1``) != ``0``)``    ``{``        ``A = -``1``;``        ``B = -``1``;``    ``}`` ` `    ``// Case 3: If both Sum and XOR``    ``// are equal``    ``else` `if` `(X == Y)``    ``{``        ``A = ``0``;``        ``B = Y;``    ``}`` ` `    ``// Case 4: If above cases fails``    ``else``    ``{``        ` `        ``// Update the value of A``        ``A = (X - Y) / ``2``;`` ` `        ``// Check if A & Y value is 0``        ``if` `((A & Y) == ``0``)``        ``{``            ` `            ``// If true, update B``            ``B = (A + Y);``        ``}`` ` `        ``// Otherwise assign -1 to A,``        ``// -1 to B``        ``else``        ``{``            ``A = -``1``;``            ``B = -``1``;``        ``}``    ``}`` ` `    ``// Print the numbers A and B``    ``System.out.print(A + ``" "` `+ B);``}``   ` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ` `    ``// Given Sum and XOR of 2 numbers``    ``int` `X = ``17``, Y = ``13``;`` ` `    ``// Function Call``    ``findNums(X, Y);``}``}` `// This code is contributed by susmitakundugoaldanga`

## Python

 `# Python program for the above approach` `# Function to find the value of A and``# B whose sum is X and xor is Y``def` `findNums(X, Y):``  ` `    ``# Initialize the two numbers``    ``A ``=` `0``;``    ``B ``=` `0``;` `    ``# Case 1: X < Y``    ``if` `(X < Y):``        ``A ``=` `-``1``;``        ``B ``=` `-``1``;` `    ``# Case 2: X-Y is odd``    ``elif` `(((``abs``(X ``-` `Y)) & ``1``) !``=` `0``):``        ``A ``=` `-``1``;``        ``B ``=` `-``1``;` `    ``# Case 3: If both Sum and XOR``    ``# are equal``    ``elif` `(X ``=``=` `Y):``        ``A ``=` `0``;``        ``B ``=` `Y;` `    ``# Case 4: If above cases fails``    ``else``:` `        ``# Update the value of A``        ``A ``=` `(X ``-` `Y) ``/``/` `2``;` `        ``# Check if A & Y value is 0``        ``if` `((A & Y) ``=``=` `0``):` `            ``# If True, update B``            ``B ``=` `(A ``+` `Y);` `        ``# Otherwise assign -1 to A,``        ``# -1 to B``        ``else``:``            ``A ``=` `-``1``;``            ``B ``=` `-``1``;` `    ``# Print the numbers A and B``    ``print` `A;``    ``print` `B;` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``  ` `    ``# Given Sum and XOR of 2 numbers``    ``X ``=` `17``;``    ``Y ``=` `13``;` `    ``# Function Call``    ``findNums(X, Y);` `# This code is contributed by shikhasingrajput`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{``   ` `// Function to find the value of A and``// B whose sum is X and xor is Y``static` `void` `findNums(``int` `X, ``int` `Y)``{``    ` `    ``// Initialize the two numbers``    ``int` `A, B;`` ` `    ``// Case 1: X < Y``    ``if` `(X < Y)``    ``{``        ``A = -1;``        ``B = -1;``    ``}`` ` `    ``// Case 2: X-Y is odd``    ``else` `if` `(((Math.Abs(X - Y)) & 1) != 0)``    ``{``        ``A = -1;``        ``B = -1;``    ``}`` ` `    ``// Case 3: If both Sum and XOR``    ``// are equal``    ``else` `if` `(X == Y)``    ``{``        ``A = 0;``        ``B = Y;``    ``}`` ` `    ``// Case 4: If above cases fails``    ``else``    ``{``        ` `        ``// Update the value of A``        ``A = (X - Y) / 2;`` ` `        ``// Check if A & Y value is 0``        ``if` `((A & Y) == 0)``        ``{``            ` `            ``// If true, update B``            ``B = (A + Y);``        ``}`` ` `        ``// Otherwise assign -1 to A,``        ``// -1 to B``        ``else``        ``{``            ``A = -1;``            ``B = -1;``        ``}``    ``}`` ` `    ``// Print the numbers A and B``    ``Console.Write(A + ``" "` `+ B);``}``   ` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ` `    ``// Given Sum and XOR of 2 numbers``    ``int` `X = 17, Y = 13;``    ` `    ``// Function Call``    ``findNums(X, Y);``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``
Output:
`2 15`

Time Complexity: O(1)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up