Skip to content
Related Articles

Related Articles

Find three integers less than or equal to N such that their LCM is maximum
  • Difficulty Level : Basic
  • Last Updated : 08 Apr, 2021

Given a number N(>=3). The task is to find the three integers (<=N) such that LCM of these three integers is maximum. 
Examples: 
 

Input: N = 3
Output: 1 2 3

Input: N = 5
Output: 3 4 5

 

Approach: Since the task is to maximize the LCM, so if all three numbers don’t have any common factor then the LCM will be the product of those three numbers and that will be maximum.
 

  • If n is odd then the answer will be n, n-1, n-2.
  • If n is even, 
    1. If gcd of n and n-3 is 1 then answer will be n, n-1, n-3.
    2. Otherwise, n-1, n-2, n-3 will be required answer.

Below is the implementation of the above approach: 
 

C++




// CPP Program to find three integers
// less than N whose LCM is maximum
#include <bits/stdc++.h>
using namespace std;
 
// function to find three integers
// less than N whose LCM is maximum
void MaxLCM(int n)
{
    // if n is odd
    if (n % 2 != 0)
        cout << n << " " << (n - 1) << " " << (n - 2);
 
    // if n is even and n, n-3 gcd is 1
    else if (__gcd(n, (n - 3)) == 1)
        cout << n << " " << (n - 1) << " " << (n - 3);
 
    else
        cout << (n - 1) << " " << (n - 2) << " " << (n - 3);
}
 
// Driver code
int main()
{
    int n = 12;
 
    // function call
    MaxLCM(n);
 
    return 0;
}

Java




// Java Program to find three integers
// less than N whose LCM is maximum
 
import java.io.*;
 
class GFG {
   // Recursive function to return gcd of a and b
static int __gcd(int a, int b)
{
    // Everything divides 0 
    if (a == 0)
       return b;
    if (b == 0)
       return a;
    
    // base case
    if (a == b)
        return a;
    
    // a is greater
    if (a > b)
        return __gcd(a-b, b);
    return __gcd(a, b-a);
}
 
// function to find three integers
// less than N whose LCM is maximum
static void MaxLCM(int n)
{
    // if n is odd
    if (n % 2 != 0)
        System.out.print(n + " " + (n - 1) + " " + (n - 2));
 
    // if n is even and n, n-3 gcd is 1
    else if (__gcd(n, (n - 3)) == 1)
        System.out.print( n + " " +(n - 1)+ " " + (n - 3));
 
    else
        System.out.print((n - 1) + " " + (n - 2) + " " + (n - 3));
}
 
// Driver code
public static void main (String[] args) {
    int n = 12;
 
    // function call
    MaxLCM(n);
    }
}
// This code is contributed by anuj_67..

Python3




# Python 3 Program to find three integers
# less than N whose LCM is maximum
from math import gcd
 
# function to find three integers
# less than N whose LCM is maximum
def MaxLCM(n) :
 
    # if n is odd
    if (n % 2 != 0) :
        print(n, (n - 1), (n - 2))
 
    # if n is even and n, n-3 gcd is 1
    elif (gcd(n, (n - 3)) == 1) :
        print(n, (n - 1), (n - 3))
 
    else :
        print((n - 1), (n - 2), (n - 3))
 
# Driver Code
if __name__ == "__main__" :
     
    n = 12
 
    # function call
    MaxLCM(n)
 
# This code is contributed by Ryuga

C#




// C# Program to find three integers
// less than N whose LCM is maximum
 
using System;
 
class GFG {
// Recursive function to return gcd of a and b
static int __gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0)
    return b;
    if (b == 0)
    return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return __gcd(a-b, b);
    return __gcd(a, b-a);
}
 
// function to find three integers
// less than N whose LCM is maximum
static void MaxLCM(int n)
{
    // if n is odd
    if (n % 2 != 0)
        Console.Write(n + " " + (n - 1) + " " + (n - 2));
 
    // if n is even and n, n-3 gcd is 1
    else if (__gcd(n, (n - 3)) == 1)
        Console.Write( n + " " +(n - 1)+ " " + (n - 3));
 
    else
        Console.Write((n - 1) + " " + (n - 2) + " " + (n - 3));
}
 
// Driver code
public static void Main () {
    int n = 12;
 
    // function call
    MaxLCM(n);
    }
}
// This code is contributed by anuj_67..

PHP




<?php
// PHP Program to find three integers
// less than N whose LCM is maximum
 
// Recursive function to return
// gcd of a and b
function __gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0)
        return $b;
    if ($b == 0)
        return $a;
     
    // base case
    if ($a == $b)
        return $a;
     
    // a is greater
    if ($a > $b)
        return __gcd($a - $b, $b);
    return __gcd($a, $b - $a);
 
// function to find three integers
// less than N whose LCM is maximum
function MaxLCM($n)
{
    // if n is odd
    if ($n % 2 != 0)
        echo $n , " " , ($n - 1) ,
                  " " , ($n - 2);
 
    // if n is even and n, n-3 gcd is 1
    else if (__gcd($n, ($n - 3)) == 1)
        echo $n , " " , ($n - 1),
                  " " , ($n - 3);
  
    else
        echo ($n - 1) , " " , ($n - 2),
                        " " , ($n - 3);
}
 
// Driver code
$n = 12;
 
// function call
MaxLCM($n);
 
// This code is contributed by Sachin
?>

Javascript




<script>
 
// JavaScript Program to find three integers
// less than N whose LCM is maximum
 
    // Recursive function to return gcd of a and b
    function __gcd(a , b)
    {
        // Everything divides 0
        if (a == 0)
            return b;
        if (b == 0)
            return a;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
 
    // function to find three integers
    // less than N whose LCM is maximum
    function MaxLCM(n) {
        // if n is odd
        if (n % 2 != 0)
            document.write(n + " " + (n - 1) + " " + (n - 2));
 
        // if n is even and n, n-3 gcd is 1
        else if (__gcd(n, (n - 3)) == 1)
            document.write(n + " " + (n - 1) + " " + (n - 3));
 
        else
            document.write((n - 1) + " " + (n - 2) + " " + (n - 3));
    }
 
    // Driver code
     
        var n = 12;
 
        // function call
        MaxLCM(n);
         
// This code contributed by Rajput-Ji
 
</script>
Output: 
11 10 9

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA




My Personal Notes arrow_drop_up
Recommended Articles
Page :