A right wedge is a wedge with parallel side triangles. It have two side bases **a** and **b**, top edges **e** and height **h**. The task is to find the volume of the given rectangular right wedges.

**Examples:**

Input:a = 2, b = 5, e = 5, h = 6Output:Volume = 45.0Input:a = 5, b = 4, e = 4, h = 6Output:Volume = 56.0

**Approach:**

Va is the volume of triangular pyramid i.e. **Va = (1 / 3) * area of triangle * (e – a)**

Area of triangle = (1 / 2) * b * h

i.e **Va = ( 1 / 3 ) * (( 1 / 2 ) * ( b * h * (e – a)))**

Vb is a volume of triangular prism i.e. **Vb = area of cross section * length(side)**

i.e. **Vb = (1 / 2) * (b * h * a)**

Total Volume = Va + Vb

= (1 / 3) * ((1 / 2) * (b * h * ( e – a ))) + (1 / 2) * (b * h * a)

= (1 / 6) * (b * h * (e – a)) + (1 / 2) * (b * h * a)

= ((b * h) * (e – a) + 3 * b * h * a) / 6

= (b * h * e – b * h * a + 3 * b * h * a) / 6

= (b * h * e + 2 * b * h * a) / 6

= (b * h / 6) * (2 * a + e)

Volume of the rectangular right wedge = (b * h / 6) * (2 * a + e) where a and b are the side bases, e is the top edge and h is the height of the rectangular right wedge.

Below is the implementation of the above approach:

## C++

`// CPP program to find volume of rectangular right wedge` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// function to return volume` `//of rectangular right wedge` `double` `volumeRec(` `double` `a,` `double` `b,` `double` `e,` `double` `h)` `{` ` ` ` ` `return` `(((b * h )/ 6)*(2 * a + e));` `}` `// Driver code` `int` `main()` `{` ` ` `double` `a = 2;` ` ` `double` `b = 5;` ` ` `double` `e = 5;` ` ` `double` `h = 6;` ` ` `printf` `(` `"Volume = %.1f"` `,volumeRec(a, b, e, h));` ` ` `return` `0;` `}` `// This code contributed by nidhiva` |

## Java

`// Java implementation of the approach` `class` `GFG {` ` ` `// Function to return the volume` ` ` `// of the rectangular right wedge` ` ` `static` `double` `volumeRec(` `double` `a, ` `double` `b, ` `double` `e, ` `double` `h)` ` ` `{` ` ` `return` `(((b * h) / ` `6` `) * (` `2` `* a + e));` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String[] args) ` `throws` `java.lang.Exception` ` ` `{` ` ` `double` `a = ` `2` `, b = ` `5` `, e = ` `5` `, h = ` `6` `;` ` ` `System.out.print(` `"Volume = "` `+ volumeRec(a, b, e, h));` ` ` `}` `}` |

## Python3

`# Python3 implementation of the approach` `# Function to return the volume` `# of the rectangular right wedge` `def` `volumeRec(a, b, e, h) :` ` ` ` ` `return` `(((b ` `*` `h) ` `/` `6` `) ` `*` `(` `2` `*` `a ` `+` `e));` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` ` ` `a ` `=` `2` `; b ` `=` `5` `; e ` `=` `5` `; h ` `=` `6` `;` ` ` ` ` `print` `(` `"Volume = "` `,volumeRec(a, b, e, h));` ` ` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` `// Function to return the volume` ` ` `// of the rectangular right wedge` ` ` `static` `double` `volumeRec(` `double` `a, ` `double` `b,` ` ` `double` `e, ` `double` `h)` ` ` `{` ` ` `return` `(((b * h) / 6) * (2 * a + e));` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `double` `a = 2, b = 5, e = 5, h = 6;` ` ` `Console.WriteLine(` `"Volume = "` `+ volumeRec(a, b, e, h));` ` ` `}` `}` `// This code is contributed by vt_m.` |

## Javascript

`<script>` `// javascript program to find volume of rectangular right wedge` `// function to return volume` `//of rectangular right wedge` `function` `volumeRec( a, b, e, h)` `{` ` ` ` ` `return` `(((b * h )/ 6)*(2 * a + e));` `}` `// Driver code` ` ` `let a = 2;` ` ` `let b = 5;` ` ` `let e = 5;` ` ` `let h = 6;` ` ` `document.write(` `"Volume = "` `+volumeRec(a, b, e, h).toFixed(1));` ` ` `// This code is contributed by Rajput-Ji` `</script>` |

**Output:**

Volume = 45.0

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.