# Find the volume of rectangular right wedge

• Last Updated : 07 Jun, 2022

A right wedge is a wedge with parallel side triangles. It have two side bases a and b, top edges e and height h. The task is to find the volume of the given rectangular right wedges.

Examples:

Input: a = 2, b = 5, e = 5, h = 6
Output: Volume = 45.0
Input: a = 5, b = 4, e = 4, h = 6
Output: Volume = 56.0

Approach:

Va is the volume of triangular pyramid i.e. Va = (1 / 3) * area of triangle * (e – a)
Area of triangle = (1 / 2) * b * h
i.e Va = ( 1 / 3 ) * (( 1 / 2 ) * ( b * h * (e – a)))
Vb is a volume of triangular prism i.e. Vb = area of cross section * length(side)
i.e. Vb = (1 / 2) * (b * h * a)

Total Volume = Va + Vb
= (1 / 3) * ((1 / 2) * (b * h * ( e – a ))) + (1 / 2) * (b * h * a)
= (1 / 6) * (b * h * (e – a)) + (1 / 2) * (b * h * a)
= ((b * h) * (e – a) + 3 * b * h * a) / 6
= (b * h * e – b * h * a + 3 * b * h * a) / 6
= (b * h * e + 2 * b * h * a) / 6
= (b * h / 6) * (2 * a + e)

Volume of the rectangular right wedge = (b * h / 6) * (2 * a + e) where a and b are the side bases, e is the top edge and h is the height of the rectangular right wedge.
Below is the implementation of the above approach:

## C++

 `// CPP program to find volume of rectangular right wedge``#include ``using` `namespace` `std;` `// function to return volume``//of rectangular right wedge``double` `volumeRec(``double` `a,``double` `b,``double` `e,``double` `h)``{``    ` `    ``return` `(((b * h )/ 6)*(2 * a + e));``}` `// Driver code``int` `main()``{``    ``double` `a = 2;``    ``double` `b = 5;``    ``double` `e = 5;``    ``double` `h = 6;``    ``printf``(``"Volume = %.1f"``,volumeRec(a, b, e, h));``    ``return` `0;``}` `// This code contributed by nidhiva`

## Java

 `// Java implementation of the approach``class` `GFG {` `    ``// Function to return the volume``    ``// of the rectangular right wedge``    ``static` `double` `volumeRec(``double` `a, ``double` `b, ``double` `e, ``double` `h)``    ``{``        ``return` `(((b * h) / ``6``) * (``2` `* a + e));``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args) ``throws` `java.lang.Exception``    ``{``        ``double` `a = ``2``, b = ``5``, e = ``5``, h = ``6``;``        ``System.out.print(``"Volume = "` `+ volumeRec(a, b, e, h));``    ``}``}`

## Python3

 `# Python3 implementation of the approach` `# Function to return the volume``# of the rectangular right wedge``def` `volumeRec(a, b, e, h) :``    ` `    ``return` `(((b ``*` `h) ``/` `6``) ``*` `(``2` `*` `a ``+` `e));`  `# Driver code``if` `__name__ ``=``=` `"__main__"` `:``    ` `    ``a ``=` `2``; b ``=` `5``; e ``=` `5``; h ``=` `6``;``    ` `    ``print``(``"Volume = "``,volumeRec(a, b, e, h));``    ` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{` `    ``// Function to return the volume``    ``// of the rectangular right wedge``    ``static` `double` `volumeRec(``double` `a, ``double` `b,``                            ``double` `e, ``double` `h)``    ``{``        ``return` `(((b * h) / 6) * (2 * a + e));``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``double` `a = 2, b = 5, e = 5, h = 6;``        ``Console.WriteLine(``"Volume = "` `+ volumeRec(a, b, e, h));``    ``}``}` `// This code is contributed by vt_m.`

## Javascript

 ``

Output:

`Volume = 45.0`

Time Complexity: O(1)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up