Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find the value of N XOR’ed to itself K times

  • Last Updated : 06 Sep, 2021

Given two integer N and K, the task is to find the value of N XOR N XOR N XOR N … XOR N (K times).

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 123, K = 3 
Output: 123 
(123 ^ 123 ^ 123) = 123
Input: N = 123, K = 2 
Output:
(123 ^ 123) = 0  



Naive approach: Simply run a for loop and xor N, K times.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return n ^ n ^ ... k times
int xorK(int n, int k)
{
 
    // Find the result
    int res = n;
    for (int i = 1; i < k; i++)
        res = (res ^ n);
    return res;
}
 
// Driver code
int main()
{
    int n = 123, k = 3;
 
    cout << xorK(n, k);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // Find the result
    int res = n;
    for (int i = 1; i < k; i++)
        res = (res ^ n);
    return n;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 123, k = 3;
 
    System.out.print(xorK(n, k));
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
 
# Function to return n ^ n ^ ... k times
def xorK(n, k):
 
    # Find the result
    res = n
    for i in range(1, k):
        res = (res ^ n)
    return n
 
# Driver code
n = 123
k = 3
 
print(xorK(n, k))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // Find the result
    int res = n;
    for (int i = 1; i < k; i++)
        res = (res ^ n);
    return n;
}
 
// Driver code
static public void Main ()
{
    int n = 123, k = 3;
     
    Console.Write(xorK(n, k));
}
}
 
// This code is contributed by ajit.

Javascript




<script>
 
// JavaSCript implementation of the approach
 
// Function to return n ^ n ^ ... k times
function xorK(n, k)
{
 
    // Find the result
    let res = n;
    for (let i = 1; i < k; i++)
        res = (res ^ n);
    return n;
}
 
// Driver code
 
    let n = 123, k = 3;
 
    document.write(xorK(n, k));
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
123

 

Time Complexity: O(K) 
Space Complexity: O(1)

Efficient approach: From the properties X XOR X = 0 and X ^ 0 = X, it can be observed that when K is odd then the answer will be N itself else the answer will be 0.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return n ^ n ^ ... k times
int xorK(int n, int k)
{
 
    // If k is odd the answer is
    // the number itself
    if (k % 2 == 1)
        return n;
 
    // Else the answer is 0
    return 0;
}
 
// Driver code
int main()
{
    int n = 123, k = 3;
 
    cout << xorK(n, k);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // If k is odd the answer is
    // the number itself
    if (k % 2 == 1)
        return n;
 
    // Else the answer is 0
    return 0;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 123, k = 3;
 
    System.out.print(xorK(n, k));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python implementation of the approach
 
# Function to return n ^ n ^ ... k times
def xorK(n, k):
     
    # If k is odd the answer is
    # the number itself
    if (k % 2 == 1):
        return n
 
    # Else the answer is 0
    return 0
 
# Driver code
n = 123
k = 3
 
print(xorK(n, k))
 
# This code is contributed by Sanjit_Prasad

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // If k is odd the answer is
    // the number itself
    if (k % 2 == 1)
        return n;
 
    // Else the answer is 0
    return 0;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 123, k = 3;
 
    Console.Write(xorK(n, k));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to return n ^ n ^ ... k times
    function xorK(n, k)
    {
 
        // If k is odd the answer is
        // the number itself
        if (k % 2 == 1)
            return n;
 
        // Else the answer is 0
        return 0;
    }
     
    let n = 123, k = 3;
  
    document.write(xorK(n, k));
     
</script>
Output: 
123

 

Time Complexity: O(1) 
Space Complexity: O(1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :