Given three integers A, B, and C which denotes the sides of a triangle, the task is to check that the triangle is a right-angled, acute-angled or obtuse-angled triangle.
Examples:
Input: A = 1, B = 4, C = 3
Output: Obtuse-angled Triangle
Explanation:
Triangle with the sides 1, 2 and 3 is an obtuse-angled triangleInput: A = 2, B = 2, C = 2
Output: Acute-angled Triangle
Explanation:
Triangle with the sides 2, 2, and 2 is an acute-angled triangle
Approach: The idea is to use the facts from the cosine law to check the type of triangle using this formulae –
It generalizes the Pythagorean Theorum, which states that for a right-angled triangle square of the hypotenuse is equal to the sum of squares of the base and height of the triangle, which is
Similarly, It can be observed that
For acute-angled triangle
For Obtuse-angled triangle
Below is the implementation of the above approach:
C++
// C++ implementation to find // the type of triangle with // the help of the sides #include <bits/stdc++.h> using namespace std; // Function to find the type of // triangle with the help of sides void checkTypeOfTriangle( int a, int b, int c){ int sqa = pow (a, 2); int sqb = pow (b, 2); int sqc = pow (c, 2); if (sqa == sqb + sqc || sqb == sqc + sqa || sqc == sqa + sqb){ cout << "Right-angled Triangle" ; } else if (sqa > sqc + sqb || sqb > sqa + sqc || sqc > sqa + sqb){ cout << "Obtuse-angled Triangle" ; } else { cout << "Acute-angled Triangle" ; } } // Driver Code int main() { int a, b, c; a = 2; b = 2; c = 2; // Function Call checkTypeOfTriangle(a, b, c); return 0; } |
Java
// Java implementation to find // the type of triangle with // the help of the sides import java.util.*; class GFG { // Function to find the type of // triangle with the help of sides static void checkTypeOfTriangle( int a, int b, int c){ int sqa = ( int )Math.pow(a, 2 ); int sqb = ( int )Math.pow(b, 2 ); int sqc = ( int )Math.pow(c, 2 ); if (sqa == sqa + sqb || sqb == sqa + sqc || sqc == sqa + sqb){ System.out.print( "Right-angled Triangle" ); } else if (sqa > sqc + sqb || sqb > sqa + sqc || sqc > sqa + sqb){ System.out.print( "Obtuse-angled Triangle" ); } else { System.out.print( "Acute-angled Triangle" ); } } // Driver Code public static void main (String []args) { int a, b, c; a = 2 ; b = 2 ; c = 2 ; // Function Call checkTypeOfTriangle(a, b, c); } } // This code is contribute by chitranayal |
Python3
# Python3 implementation to find # the type of triangle with # the help of the sides # Function to find the type of # triangle with the help of sides def checkTypeOfTriangle(a,b,c): sqa = pow (a, 2 ) sqb = pow (b, 2 ) sqc = pow (c, 2 ) if (sqa = = sqa + sqb or sqb = = sqa + sqc or sqc = = sqa + sqb): print ( "Right-angled Triangle" ) elif (sqa > sqc + sqb or sqb > sqa + sqc or sqc > sqa + sqb): print ( "Obtuse-angled Triangle" ) else : print ( "Acute-angled Triangle" ) # Driver Code if __name__ = = '__main__' : a = 2 b = 2 c = 2 # Function Call checkTypeOfTriangle(a, b, c) # This code is contributed by mohit kumar 29 |
C#
// C# implementation to find // the type of triangle with // the help of the sides using System; class GFG { // Function to find the type of // triangle with the help of sides static void checkTypeOfTriangle( int a, int b, int c){ int sqa = ( int )Math.Pow(a, 2); int sqb = ( int )Math.Pow(b, 2); int sqc = ( int )Math.Pow(c, 2); if (sqa == sqa + sqb || sqb == sqa + sqc || sqc == sqa + sqb){ Console.Write( "Right-angled Triangle" ); } else if (sqa > sqc + sqb || sqb > sqa + sqc || sqc > sqa + sqb){ Console.Write( "Obtuse-angled Triangle" ); } else { Console.Write( "Acute-angled Triangle" ); } } // Driver Code public static void Main(String []args) { int a, b, c; a = 2; b = 2; c = 2; // Function Call checkTypeOfTriangle(a, b, c); } } // This code is contributed by 29AjayKumar |
Acute-angled Triangle
Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer Complete Interview Preparation Course.