Find the sum of the series 2, 5, 13, 35, 97…
Given a series and a number n, the task is to find the sum of its first n terms. Below is the series:
2, 5, 13, 35, 97, …
Examples:
Input: N = 2
Output: 7
The sum of first 2 terms of Series is
2 + 5 = 7
Input: N = 4
Output: 55
The sum of first 4 terms of Series is
2 + 5 + 13 + 35 = 55
Approach: From this given series we find it is the sum of the Two GP series with common ratios 2, 3.
Sn = 2 + 5 + 13 + 35 + 97 … + upto nth term
Sn = (2^0 + 3^ 0) + (2^1 + 3^1) + (2^2 + 3^2) + (2^3 + 3^3)+ (2^4 + 3^4) …… + upto nth term
Sn = (2^0 + 2^1 + 2^2 + 2^3 + 2^4 … + upto nth term) + ( 3^0 + 3^1 + 3^2 + 3^3 …… + unto nth term )
Since We know that the sum of n terms of the GP is given by the following formula:

Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int calculateSum( int n)
{
int r1 = 2, r2 = 3;
int a1 = 1, a2 = 1;
return a1 * ( pow (r1, n) - 1) / (r1 - 1)
+ a2 * ( pow (r2, n) - 1) / (r2 - 1);
}
int main()
{
int n = 4;
cout << "Sum = " << calculateSum(n)
<< endl;
return 0;
}
|
Java
public class GFG {
static int calculateSum( int n)
{
int r1 = 2 , r2 = 3 ;
int a1 = 1 , a2 = 1 ;
return ( int )(a1 * (Math.pow(r1, n) - 1 ) / (r1 - 1 )
+ a2 * (Math.pow(r2, n) - 1 ) / (r2 - 1 ));
}
public static void main(String[] args) {
int n = 4 ;
System.out.println( "Sum = " +calculateSum(n));
}
}
|
Python 3
from math import *
def calculateSum(n) :
r1, r2 = 2 , 3
a1, a2 = 1 , 1
return (a1 * ( pow (r1, n) - 1 ) / / (r1 - 1 )
+ a2 * ( pow (r2, n) - 1 ) / / (r2 - 1 ))
if __name__ = = "__main__" :
n = 4
print ( "SUM = " ,calculateSum(n))
|
C#
using System;
class GFG
{
static int calculateSum( int n)
{
int r1 = 2, r2 = 3;
int a1 = 1, a2 = 1;
return ( int )(a1 * (Math.Pow(r1, n) - 1) / (r1 - 1) +
a2 * (Math.Pow(r2, n) - 1) / (r2 - 1));
}
static public void Main ()
{
int n = 4;
Console.Write( "Sum = " +
calculateSum(n));
}
}
|
PHP
<?php
function calculateSum( $n )
{
$r1 = 2;
$r2 = 3;
$a1 = 1;
$a2 = 1;
return $a1 * (pow( $r1 , $n ) - 1) /
( $r1 - 1) + $a2 *
(pow( $r2 , $n ) - 1) /
( $r2 - 1);
}
$n = 4;
echo "Sum = " , calculateSum( $n );
?>
|
Javascript
<script>
function calculateSum(n)
{
var r1 = 2, r2 = 3;
var a1 = 1, a2 = 1;
return parseInt((a1 * (Math.pow(r1, n) - 1) / (r1 - 1)
+ a2 * (Math.pow(r2, n) - 1) / (r2 - 1)));
}
var n = 4;
document.write( "Sum = " +calculateSum(n));
</script>
|
Time Complexity: O(log n)
Auxiliary Space: O(1), As constant extra space is used.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Dec, 2022
Like Article
Save Article