Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find the sum of the number of divisors

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given three integers A, B, C, the task is to find 
ΣAi=1 ΣBj=1ΣCk=1 d(i.j.k), where d(x) is the number of divisors of x. Answer can be very large, So, print answer modulo 109+7. 
Examples: 
 

Input: A = 2, B = 2, c = 2
Output: 20
Explanation: d(1.1.1) = d(1) = 1;
    d(1·1·2) = d(2) = 2;
    d(1·2·1) = d(2) = 2;
    d(1·2·2) = d(4) = 3;
    d(2·1·1) = d(2) = 2;
    d(2·1·2) = d(4) = 3;
    d(2·2·1) = d(4) = 3;
    d(2·2·2) = d(8) = 4. 

Input: A = 5, B = 6, C = 7
Output: 1520

 

Approach: 

Below is the implementation of the above approach: 
 

C++




#include <bits/stdc++.h>
using namespace std;
 
#define N 100005
#define mod 1000000007
 
// To store the number of divisors
int cnt[N];
 
// Function to find the number of divisors
// of all numbers in  the range 1 to n
void Divisors()
{
    memset(cnt, 0, sizeof cnt);
 
    // For every number 1 to n
    for (int i = 1; i < N; i++) {
 
        // Increase divisors count for every number
        for (int j = 1; j * i < N; j++)
            cnt[i * j]++;
    }
}
 
// Function to find the sum of divisors
int Sumofdivisors(int A, int B, int C)
{
    // To store sum
    int sum = 0;
 
    Divisors();
 
    for (int i = 1; i <= A; i++) {
        for (int j = 1; j <= B; j++) {
            for (int k = 1; k <= C; k++) {
                int x = i * j * k;
 
                // Count the divisors
                sum += cnt[x];
                if (sum >= mod)
                    sum -= mod;
            }
        }
    }
 
    return sum;
}
 
// Driver code
int main()
{
 
    int A = 5, B = 6, C = 7;
 
    // Function call
    cout << Sumofdivisors(A, B, C);
 
    return 0;
}

Java




// Java code for above given approach
class GFG
{
 
    static int N = 100005;
    static int mod = 1000000007;
 
    // To store the number of divisors
    static int cnt[] = new int[N];
 
    // Function to find the number of divisors
    // of all numbers in the range 1 to n
    static void Divisors()
    {
 
        // For every number 1 to n
        for (int i = 1; i < N; i++)
        {
 
            // Increase divisors count for every number
            for (int j = 1; j * i < N; j++)
            {
                cnt[i * j]++;
            }
        }
    }
 
    // Function to find the sum of divisors
    static int Sumofdivisors(int A, int B, int C)
    {
        // To store sum
        int sum = 0;
 
        Divisors();
 
        for (int i = 1; i <= A; i++)
        {
            for (int j = 1; j <= B; j++)
            {
                for (int k = 1; k <= C; k++)
                {
                    int x = i * j * k;
 
                    // Count the divisors
                    sum += cnt[x];
                    if (sum >= mod)
                    {
                        sum -= mod;
                    }
                }
            }
        }
 
        return sum;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int A = 5, B = 6, C = 7;
 
        // Function call
        System.out.println(Sumofdivisors(A, B, C));
    }
}
 
/* This code contributed by PrinciRaj1992 */

Python3




# Python3 code for above given approach
N = 100005
mod = 1000000007
 
# To store the number of divisors
cnt = [0] * N;
 
# Function to find the number of divisors
# of all numbers in the range 1 to n
def Divisors() :
 
    # For every number 1 to n
    for i in range(1, N) :
 
        # Increase divisors count
        # for every number
        for j in range(1, N // i) :
            cnt[i * j] += 1;
 
# Function to find the sum of divisors
def Sumofdivisors(A, B, C) :
     
    # To store sum
    sum = 0;
 
    Divisors();
 
    for i in range(1,A + 1) :
        for j in range(1, B + 1) :
            for k in range(1, C + 1) :
                x = i * j * k;
                 
                # Count the divisors
                sum += cnt[x];
                if (sum >= mod) :
                    sum -= mod;
 
    return sum;
 
# Driver code
if __name__ == "__main__" :
 
    A = 5; B = 6; C = 7;
 
    # Function call
    print(Sumofdivisors(A, B, C));
 
# This code is contributed by Ryuga

C#




// C# code for above given approach
using System;
     
class GFG
{
 
    static int N = 100005;
    static int mod = 1000000007;
 
    // To store the number of divisors
    static int []cnt = new int[N];
 
    // Function to find the number of divisors
    // of all numbers in the range 1 to n
    static void Divisors()
    {
 
        // For every number 1 to n
        for (int i = 1; i < N; i++)
        {
 
            // Increase divisors count for every number
            for (int j = 1; j * i < N; j++)
            {
                cnt[i * j]++;
            }
        }
    }
 
    // Function to find the sum of divisors
    static int Sumofdivisors(int A, int B, int C)
    {
        // To store sum
        int sum = 0;
 
        Divisors();
 
        for (int i = 1; i <= A; i++)
        {
            for (int j = 1; j <= B; j++)
            {
                for (int k = 1; k <= C; k++)
                {
                    int x = i * j * k;
 
                    // Count the divisors
                    sum += cnt[x];
                    if (sum >= mod)
                    {
                        sum -= mod;
                    }
                }
            }
        }
 
        return sum;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int A = 5, B = 6, C = 7;
 
        // Function call
        Console.WriteLine(Sumofdivisors(A, B, C));
    }
}
 
// This code contributed by Rajput-Ji

Javascript




<script>
    // Javascript code for above given approach
     
    let N = 100005;
    let mod = 1000000007;
   
    // To store the number of divisors
    let cnt = new Array(N);
    cnt.fill(0);
   
    // Function to find the number of divisors
    // of all numbers in the range 1 to n
    function Divisors()
    {
   
        // For every number 1 to n
        for (let i = 1; i < N; i++)
        {
   
            // Increase divisors count for every number
            for (let j = 1; j * i < N; j++)
            {
                cnt[i * j]++;
            }
        }
    }
   
    // Function to find the sum of divisors
    function Sumofdivisors(A, B, C)
    {
        // To store sum
        let sum = 0;
   
        Divisors();
   
        for (let i = 1; i <= A; i++)
        {
            for (let j = 1; j <= B; j++)
            {
                for (let k = 1; k <= C; k++)
                {
                    let x = i * j * k;
   
                    // Count the divisors
                    sum += cnt[x];
                    if (sum >= mod)
                    {
                        sum -= mod;
                    }
                }
            }
        }
   
        return sum;
    }   
    let A = 5, B = 6, C = 7;
   
    // Function call
    document.write(Sumofdivisors(A, B, C));
   
  // This code is contributed by divyeshrabdiya07.
</script>

Output: 

1520

 

Time Complexity: O((A * B * C) + N3/2)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Last Updated : 08 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials