Given a number N the task is to find the sum of the first N Centered Pentadecagonal Number.
The first few Centered Pentadecagonal Numbers are 1, 16, 46, 91, 151, 226, 316 …
Examples:
Input: N = 3
Output: 63
Explanation:
1, 16 and 46 are the first three centered pentadecagonal numbers.
Input: N = 5
Output: 305
Approach:
- Initially, we need to create a function which will help us to calculate the Nth centered Pentadecagonal number.
- Now, run a loop starting from 1 to N, to find ith Centered Pentadecagonal number.
- Add all the above calculated Centered Pentadecagonal numbers.
- Finally, display the sum of 1st N Centered Pentadecagonal numbers.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
int Centered_Pentadecagonal_num( int n)
{
return (15 * n * n - 15 * n + 2) / 2;
}
int sum_Centered_Pentadecagonal_num( int n)
{
int summ = 0;
for ( int i = 1; i < n + 1; i++)
{
summ += Centered_Pentadecagonal_num(i);
}
return summ;
}
int main()
{
int n = 5;
cout << sum_Centered_Pentadecagonal_num(n);
return 0;
}
|
Java
class GFG {
static int Centered_Pentadecagonal_num( int n)
{
return ( 15 * n * n - 15 * n + 2 ) / 2 ;
}
static int sum_Centered_Pentadecagonal_num( int n)
{
int summ = 0 ;
for ( int i = 1 ; i < n + 1 ; i++)
{
summ += Centered_Pentadecagonal_num(i);
}
return summ;
}
public static void main(String[] args)
{
int n = 5 ;
System.out.println(sum_Centered_Pentadecagonal_num(n));
}
}
|
Python3
def Centered_Pentadecagonal_num(n):
return ( 15 * n * n -
15 * n + 2 ) / / 2
def sum_Centered_Pentadecagonal_num(n) :
summ = 0
for i in range ( 1 , n + 1 ):
summ + = Centered_Pentadecagonal_num(i)
return summ
if __name__ = = '__main__' :
n = 5
print (sum_Centered_Pentadecagonal_num(n))
|
C#
using System;
class GFG
{
static int Centered_Pentadecagonal_num( int n)
{
return (15 * n * n - 15 * n + 2) / 2;
}
static int sum_Centered_Pentadecagonal_num( int n)
{
int summ = 0;
for ( int i = 1; i < n + 1; i++)
{
summ += Centered_Pentadecagonal_num(i);
}
return summ;
}
public static void Main(String[] args)
{
int n = 5;
Console.WriteLine(sum_Centered_Pentadecagonal_num(n));
}
}
|
Javascript
<script>
function Centered_Pentadecagonal_num(n)
{
return (15 * n * n - 15 * n + 2) / 2;
}
function sum_Centered_Pentadecagonal_num(n)
{
let summ = 0;
for (let i = 1; i < n + 1; i++)
{
summ += Centered_Pentadecagonal_num(i);
}
return summ;
}
let n = 5;
document.write(sum_Centered_Pentadecagonal_num(n));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1) as it is using constant space for variables