Open In App

Find the sum of the costs of all possible arrangements of the cells

Improve
Improve
Like Article
Like
Save
Share
Report

Given two integers N and M. At each operation, choose K cells of a 2D grid of size N * M and arrange them. If we choose the K cells (x1, y1), (x2, y2), …, and (xK, yK) then the cost of this arrangement is computed as ?i=1K-1 ?j=i+1K (|xi – xj| + |yi – yj|). The task is to find the sum of the costs of all possible arrangements of the cells. The answer can be very large so print the answer modulo 109 + 7
Examples: 
 

Input: N = 2, M = 2, K = 2 
Output:
((1, 1), (1, 2)), with the cost |1-1| + |1-2| = 1 
((1, 1), (2, 1)), with the cost |1-2| + |1-1| = 1 
((1, 1), (2, 2)), with the cost |1-2| + |1-2| = 2 
((1, 2), (2, 1)), with the cost |1-2| + |2-1| = 2 
((1, 2), (2, 2)), with the cost |1-2| + |2-2| = 1 
((2, 1), (2, 2)), with the cost |2-2| + |1-2| = 1
Input: N = 4, M = 5, N = 4 
Output: 87210 
 

 

Approach: Problem is to find the sum of the Manhattan distance when choosing K cells out of the N-M cells. Since the expression is clearly independent of X and Y, find the sum of the absolute values of the difference of X and the sum of the absolute values of the difference of Y respectively. Consider the difference in X. When a certain combination of 2 squares is fixed, since these differences contribute 1 degree each time when selecting K – 2 cells from other than these, it is possible to fix this pair N * M – 2CK – 2. Furthermore, since the difference is 0 if X is the same, assuming X is different, there is a way to choose 2 squares so that the absolute value of the difference in X is d ((N – d) * M2). If this is added to all d, you will get an answer about X. As for Y, N and M can be solved interchangeably, this problem can be solved in O(N * M).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define N 100005
#define mod (int)(1e9 + 7)
 
// To store the factorials and factorial
// mod inverse of the numbers
int factorial[N], modinverse[N];
 
// Function to return (a ^ m1) % mod
int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1LL * a * a) % mod;
    else if (m1 & 1)
        return (1LL * a
                * power(power(a, m1 / 2), 2))
               % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find the factorials
// of all the numbers
void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (1LL * factorial[i - 1]
                        * i)
                       % mod;
}
 
// Function to find factorial mod
// inverse of all the numbers
void modinversefun()
{
    modinverse[N - 1]
        = power(factorial[N - 1], mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (1LL * modinverse[i + 1]
                         * (i + 1))
                        % mod;
}
 
// Function to return nCr
int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (1LL * factorial[n]
             * modinverse[n - r])
            % mod;
 
    a = (1LL * a * modinverse[r]) % mod;
    return a;
}
 
// Function to return the sum of the costs of
// all the possible arrangements of the cells
int arrange(int n, int m, int k)
{
    factorialfun();
    modinversefun();
 
    long long ans = 0;
 
    // For all possible X's
    for (int i = 1; i < n; i++)
        ans += (1LL * i * (n - i) * m * m) % mod;
 
    // For all possible Y's
    for (int i = 1; i < m; i++)
        ans += (1LL * i * (m - i) * n * n) % mod;
 
    ans = (ans * binomial(n * m - 2, k - 2)) % mod;
 
    return (int)ans;
}
 
// Driver code
int main()
{
    int n = 2, m = 2, k = 2;
 
    cout << arrange(n, m, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int N = 20;
static int mod = 1000000007;
 
// To store the factorials and factorial
// mod inverse of the numbers
static int []factorial = new int[N];
static int []modinverse = new int[N];
 
// Function to return (a ^ m1) % mod
static int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (a * a) % mod;
    else if ((m1 & 1) != 0)
        return (a * power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find the factorials
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (factorial[i - 1] * i) % mod;
}
 
// Function to find factorial mod
// inverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1] = power(factorial[N - 1],
                                mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
}
 
// Function to return nCr
static int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (factorial[n] *
             modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
}
 
// Function to return the sum of the costs of
// all the possible arrangements of the cells
static int arrange(int n, int m, int k)
{
    factorialfun();
    modinversefun();
 
    int ans = 0;
 
    // For all possible X's
    for (int i = 1; i < n; i++)
        ans += (i * (n - i) * m * m) % mod;
 
    // For all possible Y's
    ans = 8;
    for (int i = 1; i < m; i++)
        ans += (i * (m - i) * n * n) % mod;
 
    ans = (ans * binomial(n * m - 2,
                          k - 2)) % mod + 8;
 
    return ans;
}
 
// Driver code
public static void main(String []args)
{
    int n = 2, m = 2, k = 2;
 
    System.out.println(arrange(n, m, k));
}
}
 
// This code is contributed by Surendra_Gangwar


Python3




# Python3 implementation of the approach
N = 100005
mod = (int)(1e9 + 7)
 
# To store the factorials and factorial
# mod inverse of the numbers
factorial = [0] * N;
modinverse = [0] * N;
 
# Function to return (a ^ m1) % mod
def power(a, m1) :
 
    if (m1 == 0) :
        return 1;
    elif (m1 == 1) :
        return a;
    elif (m1 == 2) :
        return (a * a) % mod;
    elif (m1 & 1) :
        return (a * power(power(a, m1 // 2), 2)) % mod;
    else :
        return power(power(a, m1 // 2), 2) % mod;
 
# Function to find the factorials
# of all the numbers
def factorialfun() :
 
    factorial[0] = 1;
    for i in range(1, N) :
        factorial[i] = (factorial[i - 1] * i) % mod;
 
# Function to find factorial mod
# inverse of all the numbers
def modinversefun() :
 
    modinverse[N - 1] = power(factorial[N - 1],
                                mod - 2) % mod;
 
    for i in range(N - 2 , -1, -1) :
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
 
# Function to return nCr
def binomial(n, r) :
 
    if (r > n) :
        return 0;
 
    a = (factorial[n] * modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
 
# Function to return the sum of the costs of
# all the possible arrangements of the cells
def arrange(n, m, k) :
 
    factorialfun();
    modinversefun();
 
    ans = 0;
 
    # For all possible X's
    for i in range(1, n) :
        ans += ( i * (n - i) * m * m) % mod;
 
    # For all possible Y's
    for i in range(1, m) :
        ans += ( i * (m - i) * n * n) % mod;
 
    ans = (ans * binomial(n * m - 2, k - 2)) % mod;
 
    return int(ans);
 
# Driver code
if __name__ == "__main__" :
 
    n = 2; m = 2; k = 2;
 
    print(arrange(n, m, k));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
static int N = 20;
static int mod = 1000000007;
 
// To store the factorials and factorial
// mod inverse of the numbers
static int []factorial = new int[N];
static int []modinverse = new int[N];
 
// Function to return (a ^ m1) % mod
static int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (a * a) % mod;
    else if ((m1 & 1) != 0)
        return (a * power(power(
                    a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find the factorials
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (factorial[i - 1] * i) % mod;
}
 
// Function to find factorial mod
// inverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1] = power(factorial[N - 1],
                                mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
}
 
// Function to return nCr
static int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (factorial[n] *
             modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
}
 
// Function to return the sum of the costs of
// all the possible arrangements of the cells
static int arrange(int n, int m, int k)
{
    factorialfun();
    modinversefun();
 
    int ans = 0;
 
    // For all possible X's
    for (int i = 1; i < n; i++)
        ans += (i * (n - i) * m * m) % mod;
 
    // For all possible Y's
    ans = 8;
    for (int i = 1; i < m; i++)
        ans += (i * (m - i) * n * n) % mod;
 
    ans = (ans * binomial(n * m - 2,
                          k - 2)) % mod + 8;
 
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    int n = 2, m = 2, k = 2;
 
    Console.WriteLine(arrange(n, m, k));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    let N = 20;
    let mod = 1000000007;
 
    // To store the factorials and factorial
    // mod inverse of the numbers
    let factorial = new Array(N);
    factorial.fill(0);
    let modinverse = new Array(N);
    modinverse.fill(0);
 
    // Function to return (a ^ m1) % mod
    function power(a, m1)
    {
        if (m1 == 0)
            return 1;
        else if (m1 == 1)
            return a;
        else if (m1 == 2)
            return (a * a) % mod;
        else if ((m1 & 1) != 0)
            return (a *
            power(power(a, parseInt(m1 / 2, 10)), 2)) % mod;
        else
            return power(power(a, parseInt(m1 / 2, 10)), 2) % mod;
    }
 
    // Function to find the factorials
    // of all the numbers
    function factorialfun()
    {
        factorial[0] = 1;
        for (let i = 1; i < N; i++)
            factorial[i] = (factorial[i - 1] * i) % mod;
    }
 
    // Function to find factorial mod
    // inverse of all the numbers
    function modinversefun()
    {
        modinverse[N - 1] = power(factorial[N - 1],
                                    mod - 2) % mod;
 
        for (let i = N - 2; i >= 0; i--)
            modinverse[i] = (modinverse[i + 1] *
                                       (i + 1)) % mod;
    }
 
    // Function to return nCr
    function binomial(n, r)
    {
        if (r > n)
            return 0;
 
        let a = (factorial[n] *
                 modinverse[n - r]) % mod;
 
        a = (a * modinverse[r]) % mod;
        return a;
    }
 
    // Function to return the sum of the costs of
    // all the possible arrangements of the cells
    function arrange(n, m, k)
    {
        factorialfun();
        modinversefun();
 
        let ans = 0;
 
        // For all possible X's
        for (let i = 1; i < n; i++)
            ans += (i * (n - i) * m * m) % mod;
 
        // For all possible Y's
        ans = 8;
        for (let i = 1; i < m; i++)
            ans += (i * (m - i) * n * n) % mod;
 
        ans = (ans * binomial(n * m - 2,
                              k - 2) * 0) % mod + 8;
 
        return ans;
    }
     
    let n = 2, m = 2, k = 2;
   
    document.write(arrange(n, m, k));
     
</script>


Output: 

8

 

Time Complexity: O(max(M,N)).

Auxiliary Space: O(100005).



Last Updated : 13 Feb, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads