Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find the sum of prime numbers in the Kth array

  • Last Updated : 06 May, 2021

Given K arrays where the first array contains the first prime number, the second array contains the next 2 primes and the third array contains the next 3 primes and so on. The task is to find the sum of primes in the Kth array.
Examples: 
 

Input: K = 3 
Output: 31 
arr1[] = {2} 
arr[] = {3, 5} 
arr[] = {7, 11, 13} 
7 + 11 + 13 = 31
Input: K = 2 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: Sieve of Eratosthenes can be used to find all the prime upto the required element. And the count of prime numbers in the arrays from 1 to K – 1 will be cnt = 1 + 2 + 3 + … + (K – 1) = (K * (K – 1)) / 2. Now, starting from the (cnt + 1)th prime from the sieve array, start adding all the primes until exactly K primes are added then print the sum.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
 
// To store whether a number is prime or not
bool prime[MAX];
 
// Function for Sieve of Eratosthenes
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    for (int i = 0; i < MAX; i++)
        prime[i] = true;
 
    for (int p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the sum of
// primes in the Kth array
int sumPrime(int k)
{
 
    // Update vector v to store all the
    // prime numbers upto MAX
    SieveOfEratosthenes();
    vector<int> v;
    for (int i = 2; i < MAX; i++) {
        if (prime[i])
            v.push_back(i);
    }
 
    // To store the sum of primes
    // in the kth array
    int sum = 0;
 
    // Count of primes which are in
    // the arrays from 1 to k - 1
    int skip = (k * (k - 1)) / 2;
 
    // k is the number of primes
    // in the kth array
    while (k > 0) {
        sum += v[skip];
        skip++;
 
        // A prime has been
        // added to the sum
        k--;
    }
 
    return sum;
}
 
// Driver code
int main()
{
    int k = 3;
 
    cout << sumPrime(k);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
static int MAX = 1000000;
 
// To store whether a number is prime or not
static boolean []prime = new boolean[MAX];
 
// Function for Sieve of Eratosthenes
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    for (int i = 0; i < MAX; i++)
        prime[i] = true;
 
    for (int p = 2; p * p < MAX; p++)
    {
 
        // If prime[p] is not changed
        // then it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the sum of
// primes in the Kth array
static int sumPrime(int k)
{
 
    // Update vector v to store all the
    // prime numbers upto MAX
    SieveOfEratosthenes();
    Vector<Integer> v = new Vector<>();
    for (int i = 2; i < MAX; i++)
    {
        if (prime[i])
            v.add(i);
    }
 
    // To store the sum of primes
    // in the kth array
    int sum = 0;
 
    // Count of primes which are in
    // the arrays from 1 to k - 1
    int skip = (k * (k - 1)) / 2;
 
    // k is the number of primes
    // in the kth array
    while (k > 0)
    {
        sum += v.get(skip);
        skip++;
 
        // A prime has been
        // added to the sum
        k--;
    }
 
    return sum;
}
 
// Driver code
public static void main(String[] args)
{
    int k = 3;
 
    System.out.println(sumPrime(k));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
from math import sqrt
 
MAX = 1000000
 
# Create a boolean array "prime[0..n]" and
# initialize all entries it as true.
# A value in prime[i] will finally be false
# if i is Not a prime, else true.
prime = [True] * MAX
 
# Function for Sieve of Eratosthenes
def SieveOfEratosthenes() :
 
    for p in range(2, int(sqrt(MAX)) + 1) :
 
        # If prime[p] is not changed
        # then it is a prime
        if (prime[p]) :
 
            # Update all multiples of p greater than or
            # equal to the square of it
            # numbers which are multiple of p and are
            # less than p^2 are already been marked.
            for i in range(p * p, MAX, p) :
                prime[i] = False;
 
# Function to return the sum of
# primes in the Kth array
def sumPrime(k) :
 
    # Update vector v to store all the
    # prime numbers upto MAX
    SieveOfEratosthenes();
    v = [];
    for i in range(2, MAX) :
        if (prime[i]) :
            v.append(i);
 
    # To store the sum of primes
    # in the kth array
    sum = 0;
 
    # Count of primes which are in
    # the arrays from 1 to k - 1
    skip = (k * (k - 1)) // 2;
 
    # k is the number of primes
    # in the kth array
    while (k > 0) :
        sum += v[skip];
        skip += 1;
 
        # A prime has been
        # added to the sum
        k -= 1;
 
    return sum;
 
# Driver code
if __name__ == "__main__" :
     
    k = 3;
     
    print(sumPrime(k));
 
# This code is contributed by AnkitRai01

C#




// C# mplementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
static int MAX = 1000000;
 
// To store whether a number is prime or not
static bool []prime = new bool[MAX];
 
// Function for Sieve of Eratosthenes
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    for (int i = 0; i < MAX; i++)
        prime[i] = true;
 
    for (int p = 2; p * p < MAX; p++)
    {
 
        // If prime[p] is not changed
        // then it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the sum of
// primes in the Kth array
static int sumPrime(int k)
{
 
    // Update vector v to store all the
    // prime numbers upto MAX
    SieveOfEratosthenes();
    List<int> v = new List<int>();
    for (int i = 2; i < MAX; i++)
    {
        if (prime[i])
            v.Add(i);
    }
 
    // To store the sum of primes
    // in the kth array
    int sum = 0;
 
    // Count of primes which are in
    // the arrays from 1 to k - 1
    int skip = (k * (k - 1)) / 2;
 
    // k is the number of primes
    // in the kth array
    while (k > 0)
    {
        sum += v[skip];
        skip++;
 
        // A prime has been
        // added to the sum
        k--;
    }
 
    return sum;
}
 
// Driver code
public static void Main(String[] args)
{
    int k = 3;
 
    Console.WriteLine(sumPrime(k));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
// Javascript implementation of the approach\
 
const MAX = 1000000;
 
// To store whether a number is prime or not
let prime = new Array(MAX);
 
// Function for Sieve of Eratosthenes
function SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    for (let i = 0; i < MAX; i++)
        prime[i] = true;
 
    for (let p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (let i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the sum of
// primes in the Kth array
function sumPrime(k)
{
 
    // Update vector v to store all the
    // prime numbers upto MAX
    SieveOfEratosthenes();
    let v = [];
    for (let i = 2; i < MAX; i++) {
        if (prime[i])
            v.push(i);
    }
 
    // To store the sum of primes
    // in the kth array
    let sum = 0;
 
    // Count of primes which are in
    // the arrays from 1 to k - 1
    let skip = parseInt((k * (k - 1)) / 2);
 
    // k is the number of primes
    // in the kth array
    while (k > 0) {
        sum += v[skip];
        skip++;
 
        // A prime has been
        // added to the sum
        k--;
    }
 
    return sum;
}
 
// Driver code
    let k = 3;
 
    document.write(sumPrime(k));
 
</script>
Output: 
31

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :