# Find the sum of n terms of the series 1,8,27,64 ….

• Last Updated : 03 Aug, 2022

Given a series, the task is to find the sum of the below series up to n terms:

1, 8, 27, 64, …

Examples:

```Input: N = 2
Output: 9
9 = (2*(2+1)/2)^2

Input: N = 4
Output: 100
100 = (4*(4+1)/2)^2```

Approach: We can solve this problem using the following formula:

```    Sn = 1 + 8 + 27 + 64 + .........up to n terms
Sn = (n*(n+1)/2)^2```

Below is the implementation of above approach:

## C++

 `// C++ program to find the sum of n terms``#include ``using` `namespace` `std;` `// Function to calculate the sum``int` `calculateSum(``int` `n)``{` `    ``// Return total sum``    ``return` `pow``(n * (n + 1) / 2, 2);``}` `// Driver code``int` `main()``{` `    ``int` `n = 4;``    ``cout << calculateSum(n);` `    ``return` `0;``}`

## Java

 `// Java program to find the sum of n terms``import` `java.io.*;` `class` `GFG {`  `// Function to calculate the sum``static` `int` `calculateSum(``int` `n)``{` `    ``// Return total sum``    ``return` `(``int``)Math.pow(n * (n + ``1``) / ``2``, ``2``);``}` `// Driver code`  `    ``public` `static` `void` `main (String[] args) {``        ``int` `n = ``4``;``    ``System.out.println( calculateSum(n));` `    ``}``}``// This code is contributed by inder_verma..`

## Python3

 `# Python3 program to find the``# sum of n terms` `#Function to calculate the sum``def` `calculateSum(n):``    ` `    ``#return total sum``    ``return` `(n ``*` `(n ``+` `1``) ``/` `2``)``*``*``2``    ` `#Driver code``if` `__name__``=``=``'__main__'``:``    ``n ``=` `4``    ``print``(calculateSum(n))` `#this code is contributed by Shashank_Sharma`

## C#

 `// C# program to find the sum of n terms``using` `System;` `class` `GFG``{` `// Function ot calculate the sum``static` `int` `calculateSum(``int` `n)``{` `    ``// Return total sum``    ``return` `(``int``)Math.Pow(n * (n + 1) / 2, 2);``}` `// Driver code``public` `static` `void` `Main ()``{``    ``int` `n = 4;``    ``Console.WriteLine(calculateSum(n));``}``}` `// This code is contributed``// by Akanksha Rai(Abby_akku)`

## PHP

 ``

## Javascript

 ``

Output:

`100`

Time complexity: O(logn) because using inbuilt function pow

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up