# Find the subsequence with given sum in a superincreasing sequence

A sequence of positive real numbers S1, S2, S3, …, SN is called a superincreasing sequence if every element of the sequence is greater than the sum of all the previous elements in the sequence. For example, 1, 3, 6, 13, 27, 52 is such subsequence.
Now, given a superincreasing sequence S and the sum of a subsequence of this sequence, the task is to find the subsequence.

Examples:

Input: S[] = {17, 25, 46, 94, 201, 400}, sum = 272
Output: 25 46 201
25 + 46 + 201 = 272

Input: S[] = {1, 2, 4, 8, 16}, sum = 12
Output: 4 8

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: This problem can be solved using the greedy technique. Starting from the last element of the array till the first element, there are two cases:

1. sum < arr[i]: In this case, the current element cannot be a part of the required subsequence as after including it, the sum of the subsequence will exceed the given sum. So discard the current element.
2. sum ≥ arr[i]: In this case, the current element has to be included in the required subsequence. This is because if the current element is not included then the sum of the previous elements in the array will be smaller than the current element (as it is a superincreasing sequence) which will in turn be smaller than the required sum. So take the current element and update the sum as sum = sum – arr[i].

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the required subsequence ` `void` `findSubSeq(``int` `arr[], ``int` `n, ``int` `sum) ` `{ ` ` `  `    ``for` `(``int` `i = n - 1; i >= 0; i--) { ` ` `  `        ``// Current element cannot be a part ` `        ``// of the required subsequence ` `        ``if` `(sum < arr[i]) ` `            ``arr[i] = -1; ` ` `  `        ``// Include current element in ` `        ``// the requried subsequence ` `        ``// So update the sum ` `        ``else` `            ``sum -= arr[i]; ` `    ``} ` ` `  `    ``// Print the elements of the ` `    ``// required subsequence ` `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// If the current element was ` `        ``// included in the subsequence ` `        ``if` `(arr[i] != -1) ` `            ``cout << arr[i] << ``" "``; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 17, 25, 46, 94, 201, 400 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``); ` `    ``int` `sum = 272; ` ` `  `    ``findSubSeq(arr, n, sum); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `class` `GFG  ` `{ ` `     `  `    ``// Function to find the required subsequence  ` `    ``static` `void` `findSubSeq(``int` `arr[], ``int` `n, ``int` `sum)  ` `    ``{  ` `        ``for` `(``int` `i = n - ``1``; i >= ``0``; i--) ` `        ``{  ` `     `  `            ``// Current element cannot be a part  ` `            ``// of the required subsequence  ` `            ``if` `(sum < arr[i])  ` `                ``arr[i] = -``1``;  ` `     `  `            ``// Include current element in  ` `            ``// the requried subsequence  ` `            ``// So update the sum  ` `            ``else` `                ``sum -= arr[i];  ` `        ``}  ` `     `  `        ``// Print the elements of the  ` `        ``// required subsequence  ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{  ` `     `  `            ``// If the current element was  ` `            ``// included in the subsequence  ` `            ``if` `(arr[i] != -``1``)  ` `                ``System.out.print(arr[i] + ``" "``);  ` `        ``}  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``int` `arr[] = { ``17``, ``25``, ``46``, ``94``, ``201``, ``400` `};  ` `        ``int` `n = arr.length;  ` `        ``int` `sum = ``272``;  ` `     `  `        ``findSubSeq(arr, n, sum);  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to find the required subsequence  ` `def` `findSubSeq(arr, n, ``sum``) :  ` ` `  `    ``for` `i ``in` `range``(n ``-` `1``, ``-``1``, ``-``1``) : ` ` `  `        ``# Current element cannot be a part  ` `        ``# of the required subsequence  ` `        ``if` `(``sum` `< arr[i]) : ` `            ``arr[i] ``=` `-``1``;  ` ` `  `        ``# Include current element in  ` `        ``# the requried subsequence  ` `        ``# So update the sum  ` `        ``else` `: ` `            ``sum` `-``=` `arr[i];  ` ` `  `    ``# Print the elements of the  ` `    ``# required subsequence  ` `    ``for` `i ``in` `range``(n) : ` ` `  `        ``# If the current element was  ` `        ``# included in the subsequence  ` `        ``if` `(arr[i] !``=` `-``1``) : ` `            ``print``(arr[i], end ``=` `" "``);  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``arr ``=` `[ ``17``, ``25``, ``46``, ``94``, ``201``, ``400` `];  ` `    ``n ``=` `len``(arr);  ` `    ``sum` `=` `272``;  ` ` `  `    ``findSubSeq(arr, n, ``sum``);  ` ` `  `# This code is contributed by kanugargng `

## C#

 `// C# implementation of the approach ` `using` `System; ` `     `  `class` `GFG  ` `{ ` `     `  `    ``// Function to find the required subsequence  ` `    ``static` `void` `findSubSeq(``int` `[]arr,  ` `                           ``int` `n, ``int` `sum)  ` `    ``{  ` `        ``for` `(``int` `i = n - 1; i >= 0; i--) ` `        ``{  ` `     `  `            ``// Current element cannot be a part  ` `            ``// of the required subsequence  ` `            ``if` `(sum < arr[i])  ` `                ``arr[i] = -1;  ` `     `  `            ``// Include current element in  ` `            ``// the requried subsequence  ` `            ``// So update the sum  ` `            ``else` `                ``sum -= arr[i];  ` `        ``}  ` `     `  `        ``// Print the elements of the  ` `        ``// required subsequence  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{  ` `     `  `            ``// If the current element was  ` `            ``// included in the subsequence  ` `            ``if` `(arr[i] != -1)  ` `                ``Console.Write(arr[i] + ``" "``);  ` `        ``}  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main (String[] args)  ` `    ``{  ` `        ``int` `[]arr = { 17, 25, 46, 94, 201, 400 };  ` `        ``int` `n = arr.Length;  ` `        ``int` `sum = 272;  ` `     `  `        ``findSubSeq(arr, n, sum);  ` `    ``}  ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```25 46 201
```

Time Complexity: O(n)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

6

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.