Skip to content
Related Articles

Related Articles

Find the smallest value of N such that sum of first N natural numbers is ≥ X
  • Difficulty Level : Medium
  • Last Updated : 20 Apr, 2021

Given a positive integer X (1 ≤ X ≤ 106), the task is to find the minimum value N, such that the sum of first N natural numbers is ≥ X.

Examples: 

Input: X = 14
Output: 5
Explanation: Sum of first 5 natural numbers is 15 which is greater than X( = 14).

  • 1 + 2 = 3( < 14)
  • 1 + 2 + 3 = 6( < 14)
  • 1 + 2 + 3 + 4 = 10( < 15)
  • 1 + 2 + 3 + 4 + 5 = 15( > 14)

Input: X = 91
Output: 13

Naive Approach: The simplest approach to solve this problem is to check every value in the range [1, X] and return the first value from this range for which the sum of the first N natural numbers is found to be ≥ X.



Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Fucntion to check if sum of first
// N natural numbers is >= X
bool isGreaterEqual(int N, int X)
{
    return (N * 1LL * (N + 1) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
int minimumPossible(int X)
{
    for (int i = 1; i <= X; i++) {
 
        // Check if sum of first i
        // natural number >= X
        if (isGreaterEqual(i, X))
            return i;
    }
}
 
// Driver Code
int main()
{
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    cout << minimumPossible(X);
    return 0;
}

Java




// Java Program to implement
// the above approach
import java.io.*;
class GFG
{
   
  // Fucntion to check if sum of first
  // N natural numbers is >= X
  static boolean isGreaterEqual(int N, int X)
  {
    return (N * (N + 1) / 2) >= X;
  }
 
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    for (int i = 1; i <= X; i++)
    {
 
      // Check if sum of first i
      // natural number >= X
      if (isGreaterEqual(i, X))
        return i;
    }
    return 0;
  }
 
  // Driver Code
  public static void main (String[] args)
  {
     
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    System.out.print(minimumPossible(X));
  }
}
 
// This code is contributed by Dharanendra L V.

Python3




# Python3 Program to implement
# the above approach
 
# Function to check if sum of first
# N natural numbers is >= X
def isGreaterEqual(N, X):
    return (N * (N + 1) // 2) >= X
 
# Finds minimum value of
# N such that sum of first
# N natural number >= X
def minimumPossible(X):
 
    for i in range(1, X + 1):
 
        # Check if sum of first i
        # natural number >= X
        if (isGreaterEqual(i, X)):
            return i
 
# Driver Code
if __name__ == '__main__':
     
    # Input
    X = 14
 
    # Finds minimum value of
    # N such that sum of first
    # N natural number >= X
    print (minimumPossible(X))
 
    # This code is contributed by mohit kumar 29.

C#




// C# Program to implement
// the above approach
using System;
public class GFG
{
 
  // Fucntion to check if sum of first
  // N natural numbers is >= X
  static bool isGreaterEqual(int N, int X)
  {
    return (N * (N + 1) / 2) >= X;
  }
 
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    for (int i = 1; i <= X; i++)
    {
 
      // Check if sum of first i
      // natural number >= X
      if (isGreaterEqual(i, X))
        return i;
    }
    return 0;
  }
 
  // Driver Code
  static public void Main ()
  {
 
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    Console.Write(minimumPossible(X));
  }
}
 
// This code is contributed by Dharanendra L V.

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Fucntion to check if sum of first
// N natural numbers is >= X
function isGreaterEqual(N, X)
{
    return parseInt((N * (N + 1)) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
function minimumPossible(X)
{
    for(let i = 1; i <= X; i++)
    {
         
        // Check if sum of first i
        // natural number >= X
        if (isGreaterEqual(i, X))
            return i;
    }
}
 
// Driver Code
 
// Input
let X = 14;
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
document.write(minimumPossible(X));
 
// This code is contributed by rishavmahato348
     
</script>
Output: 
5

 

Time Complexity : O(N)
Auxiliary Space : O(1)

Efficient Method: Below is the implementation of above approach :

  1. The idea is to use binary search to solve this problem.
  2. Initialize variables low = 1, high = X and perform binary search on this range.
  3. Calculate mid = low + (high – low) / 2 and check if the sum of first mid numbers is greater than or equal to x or not.
  4. If sum ≥ X, store it in a variable res and set high = mid-1
  5. Otherwise, set low = mid + 1
  6. Print res, which is the required answer.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to check if sum of first
// N natural numbers is >= X
bool isGreaterEqual(int N, int X)
{
    return (N * 1LL * (N + 1) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
int minimumPossible(int X)
{
 
    int low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high) {
        int mid = low + (high - low) / 2;
 
        // Checks if sum of first 'mid' natural
        // numbers is greater than equal to X
        if (isGreaterEqual(mid, X)) {
            // Update res
            res = mid;
            // Update high
            high = mid - 1;
        }
        else
            // Update low
            low = mid + 1;
    }
    return res;
}
 
// Driver Code
int main()
{
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    cout << minimumPossible(X);
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to check if sum of first
// N natural numbers is >= X
static boolean isGreaterEqual(int N, int X)
{
    return (N  * (N + 1) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
static int minimumPossible(int X)
{
    int low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high)
    {
        int mid = low + (high - low) / 2;
 
        // Checks if sum of first 'mid' natural
        // numbers is greater than equal to X
        if (isGreaterEqual(mid, X))
        {
           
            // Update res
            res = mid;
           
            // Update high
            high = mid - 1;
        }
        else
            // Update low
            low = mid + 1;
    }
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
   
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    System.out.print( minimumPossible(X));
}
}
 
// This code is contributed by code_hunt.

Python3




# Function to check if sum of first
# N natural numbers is >= X
def isGreaterEqual(N, X):
    return (N * (N + 1) // 2) >= X;
 
# Finds minimum value of
# N such that sum of first
# N natural number >= X
def minimumPossible(X):
  low = 1
  high = X
  res = -1;
 
  # Binary Search
  while (low <= high):
        mid = low + (high - low) // 2;
 
        # Checks if sum of first 'mid' natural
        # numbers is greater than equal to X
        if (isGreaterEqual(mid, X)):
           
            # Update res
            res = mid;
             
            # Update high
            high = mid - 1;
 
        else:
            # Update low
            low = mid + 1;
 
  return res
 
# Driver Code
if __name__ == "__main__":
   
    # Input
    X = 14;
 
    # Finds minimum value of
    # N such that sum of first
    # N natural number >= X
    print(minimumPossible(X));
 
    # This code is contributed by chitranayal.

C#




// C# program for the above approach
using System;
class GFG{
 
  // Function to check if sum of first
  // N natural numbers is >= X
  static bool isGreaterEqual(int N, int X)
  {
    return (N  * (N + 1) / 2) >= X;
  }
 
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    int low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high)
    {
      int mid = low + (high - low) / 2;
 
      // Checks if sum of first 'mid' natural
      // numbers is greater than equal to X
      if (isGreaterEqual(mid, X))
      {
 
        // Update res
        res = mid;
 
        // Update high
        high = mid - 1;
      }
      else
        // Update low
        low = mid + 1;
    }
    return res;
  }
 
 
  // Driver Code
  static public void Main()
  {
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    Console.Write( minimumPossible(X));
  }
}
 
// This code is contributed by susmitakundugoaldanga.

Javascript




<script>
 
// Function to check if sum of first
// N natural numbers is >= X
function isGreaterEqual(N, X)
{
    return parseInt((N * (N + 1)) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
function minimumPossible(X)
{
 
    let low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high) {
        let mid = low + parseInt((high - low) / 2);
 
        // Checks if sum of first 'mid' natural
        // numbers is greater than equal to X
        if (isGreaterEqual(mid, X)) {
            // Update res
            res = mid;
            // Update high
            high = mid - 1;
        }
        else
            // Update low
            low = mid + 1;
    }
    return res;
}
 
// Driver Code
// Input
let X = 14;
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
document.write(minimumPossible(X));
 
// This code is contributed by rishavmahato348.
</script>
Output: 
5

 

Time Complexity: O(log(X))
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :