Skip to content
Related Articles

Related Articles

Find the smallest contiguous sum pair in an Array
  • Last Updated : 18 Sep, 2020

Given an array arr[] containing N distinct integers, the task is to find a contiguous pair such that sum of both elements in pair is minimum.
Examples:

Input: arr[] = {1, 2, 3, 4} 
Output: (1, 2) 
Explanation: 
Here, contiguous pairs with their sum are (1, 2) = 3, (2, 3) = 5, (3, 4) = 7 and minimum is 3.

Input: arr[] = {4, 9, -3, 2, 0} 
Output: (-3, 2) 
Explanation: 
Here, contiguous pairs with their sum are (4, 9) = 13, (9, -3) = 6, (-3, 2) = -1, (2, 0) = 2

Approach: 
To solve the problem mentioned above we have to consider all the contiguous pairs and find their sum. The pair having the smallest(minimum) sum is the required answer.

Below is the implementation of above approach:



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

//C++ program to find the smallest
// sum contiguous pair
#include<bits/stdc++.h>
using namespace std;
   
// Function to find the smallest sum
// contiguous pair
vector<int> smallestSumpair(int arr[], int n)
{
  
    // Contiguous pair
    vector<int>pair;
  
    // isntialize minimum sum
    // with maximum value
    int min_sum = INT_MAX;
  
    for(int i = 1; i < n; i++)
    {
  
        // Checking for minimum value
        if( min_sum > (arr[i] + arr[i - 1]))
        {
            min_sum = arr[i] + arr[i - 1];
            if (pair.empty())
            {
  
                // Add to pair
                pair.push_back(arr[i - 1]);
                pair.push_back(arr[i]);
            }
            else
            {
  
                // Updating pair
                pair[0] = arr[i - 1];
                pair[1] = arr[i];
            }
        }
    }
    return pair;
}
   
// Driver code
int main()
{
   int arr[] = {4, 9, -3, 2, 0};
   int n = sizeof(arr) / sizeof(arr[0]);
    
   vector<int>pair = smallestSumpair(arr, n);
   cout << pair[0] << " " << pair[1];
}
  
// This code is contributed by chitranayal

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the smallest
// sum contiguous pair 
import java.util.*;
  
class GFG{
      
// Function to find the smallest sum
// contiguous pair
public static Vector<Integer> smallestSumpair(int[] arr,
                                              int n) 
      
    // Stores the contiguous pair 
    Vector<Integer> pair = new Vector<Integer>(); 
      
    // Intialize minimum sum 
    int min_sum = Integer.MAX_VALUE, i; 
      
    for(i = 1; i < n; i++) 
    
          
        // Checking for minimum value
        if (min_sum > (arr[i] + arr[i - 1])) 
        
            min_sum = arr[i] + arr[i - 1];
              
            if (pair.isEmpty()) 
            
                  
                // Add to pair
                pair.add(arr[i - 1]); 
                pair.add(arr[i]); 
            
            else
            
                  
                // Updating pair
                pair.set(0, arr[i - 1]);
                pair.set(1, arr[i]);
            
        
    
    return pair;
  
// Driver Code         
public static void main(String[] args)
{
    int arr[] = { 4, 9, -3, 2, 0 }; 
    int N = arr.length; 
      
    Vector<Integer> pair = new Vector<Integer>(); 
    pair = smallestSumpair(arr, N);
      
    System.out.println(pair.get(0) + " " +
                       pair.get(1));
}
}
  
// This code is contributed by divyeshrabadiya07

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the smallest
# sum contiguous pair
  
# importing sys
import sys
  
# Function to find the smallest sum
# contiguous pair
  
  
def smallestSumpair(arr, n):
  
    # Contiguous pair
    pair = []
  
    # isntialize minimum sum
    # with maximum value
    min_sum = sys.maxsize
  
    for i in range(1, n):
  
        # checking for minimum value
        if min_sum > (arr[i] + arr[i-1]):
            min_sum = arr[i] + arr[i-1]
  
            if pair == []:
  
                # Add to pair
                pair.append(arr[i-1])
                pair.append(arr[i])
            else:
  
                # Updating pair
                pair[0] = arr[i-1]
                pair[1] = arr[i]
  
    return pair
  
  
# Driver code
arr = [4, 9, -3, 2, 0]
n = len(arr)
pair = smallestSumpair(arr, n)
print(pair[0], pair[1])

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the smallest
// sum contiguous pair 
using System;
using System.Collections; 
using System.Collections.Generic;
  
class GFG{
  
// Function to find the smallest sum
// contiguous pair
public static ArrayList smallestSumpair(int[] arr,
                                        int n) 
      
    // Stores the contiguous pair 
    ArrayList pair = new ArrayList(); 
      
    // Intialize minimum sum 
    int min_sum = int.MaxValue, i; 
      
    for(i = 1; i < n; i++) 
    
          
        // Checking for minimum value
        if (min_sum > (arr[i] + arr[i - 1])) 
        
            min_sum = arr[i] + arr[i - 1];
              
            if (pair.Count == 0) 
            
                  
                // Add to pair
                pair.Add(arr[i - 1]); 
                pair.Add(arr[i]); 
            
            else
            
                  
                // Updating pair
                pair[0] = arr[i - 1];
                pair[1] = arr[i];
            
        
    
    return pair;
  
// Driver code
public static void Main(string[] args)
{
    int []arr = { 4, 9, -3, 2, 0 }; 
    int N = arr.Length; 
      
    ArrayList pair = new ArrayList(); 
    pair = smallestSumpair(arr, N);
      
    Console.Write(pair[0] + " " + pair[1]);
}
}
  
// This code is contributed by rutvik_56

chevron_right


Output

-3 2

Time Complexity: O(n)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :