Find the Second Largest Element in a Linked List

Given a Linked list of integer data. The task is to write a program that efficiently finds the second largest element present in the Linked List.


Input : List = 12 -> 35 -> 1 -> 10 -> 34 -> 1
Output : The second largest element is 34.

Input : List = 10 -> 5 -> 10
Output : The second largest element is 5.

A Simple Solution will be to first sort the linked list in descending order and then print the second element from the sorted linked list. The time complexity of this solution is O(nlogn).

A Better Solution is to traverse the Linked list twice. In the first traversal find the maximum element. In the second traversal find the greatest element less than the element obtained in first traversal. The time complexity of this solution is O(n).

A more Efficient Solution can be to find the second largest element in a single traversal.
Below is the complete algorithm for doing this:

1) Initialize two variables first and second to INT_MIN as,
   first = second = INT_MIN
2) Start traversing the Linked List,
   a) If the current element in Linked List say list[i] is greater
      than first. Then update first and second as,
      second = first
      first = list[i]
   b) If the current element is in between first and second,
      then update second to store the value of current variable as
      second = list[i]
3) Return the value stored in second node.

Below is the implementation of the above approach:





// C++ program to print second largest
// value in a linked list
#include <climits>
#include <iostream>
using namespace std;
// A linked list node
struct Node {
    int data;
    struct Node* next;
// Function to add a node at the
// begining of Linked List
void push(struct Node** head_ref, int new_data)
    /* allocate node */
    struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
    /* put in the data */
    new_node->data = new_data;
    /* link the old list off the new node */
    new_node->next = (*head_ref);
    /* move the head to point to the new node */
    (*head_ref) = new_node;
// Function to count size of list
int listSize(struct Node* node)
    int count = 0;
    while (node != NULL) {
        node = node->next;
    return count;
// Function to print the second
// largest element
void print2largest(struct Node* head)
    int i, first, second;
    int list_size = listSize(head);
    /* There should be atleast two elements */
    if (list_size < 2) {
        cout << "Invalid Input";
    first = second = INT_MIN;
    struct Node* temp = head;
    while (temp != NULL) {
        if (temp->data > first) {
            second = first;
            first = temp->data;
        // If current node's data is in between
        // first and second then update second
        else if (temp->data > second && temp->data != first)
            second = temp->data;
        temp = temp->next;
    if (second == INT_MIN)
        cout << "There is no second largest element\n";
        cout << "The second largest element is " << second;
// Driver program to test above function
int main()
    struct Node* start = NULL;
    /* The constructed linked list is: 
     12 -> 35 -> 1 -> 10 -> 34 -> 1 */
    push(&start, 1);
    push(&start, 34);
    push(&start, 10);
    push(&start, 1);
    push(&start, 35);
    push(&start, 12);
    return 0;



The second largest element is 34

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at to report any issue with the above content.