Given a boolean 2D array, where each row is sorted. Find the row with the maximum number of 1s.
Example:
Input matrix 0 1 1 1 0 0 1 1 1 1 1 1 // this row has maximum 1s 0 0 0 0 Output: 2
A simple method is to do a row wise traversal of the matrix, count the number of 1s in each row and compare the count with max. Finally, return the index of row with maximum 1s. The time complexity of this method is O(m*n) where m is number of rows and n is number of columns in matrix.
We can do better. Since each row is sorted, we can use Binary Search to count of 1s in each row. We find the index of first instance of 1 in each row. The count of 1s will be equal to total number of columns minus the index of first 1.
See the following code for implementation of the above approach.
C++
// CPP program to find the row // with maximum number of 1s #include <bits/stdc++.h> using namespace std; #define R 4 #define C 4 // Function to find the index of first index // of 1 in a boolean array arr[] int first( bool arr[], int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low)/2; // Check if the element at middle index is first 1 if ( ( mid == 0 || arr[mid-1] == 0) && arr[mid] == 1) return mid; // If the element is 0, recur for right side else if (arr[mid] == 0) return first(arr, (mid + 1), high); // If element is not first 1, recur for left side else return first(arr, low, (mid -1)); } return -1; } // Function that returns index of row // with maximum number of 1s. int rowWithMax1s( bool mat[R][C]) { // Initialize max values int max_row_index = 0, max = -1; // Traverse for each row and count number of 1s // by finding the index of first 1 int i, index; for (i = 0; i < R; i++) { index = first (mat[i], 0, C-1); if (index != -1 && C-index > max) { max = C - index; max_row_index = i; } } return max_row_index; } // Driver Code int main() { bool mat[R][C] = { {0, 0, 0, 1}, {0, 1, 1, 1}, {1, 1, 1, 1}, {0, 0, 0, 0}}; cout << "Index of row with maximum 1s is " << rowWithMax1s(mat); return 0; } // This is code is contributed by rathbhupendra |
C
// C program to find the row // with maximum number of 1s #include <stdio.h> #define R 4 #define C 4 // Function to find the index of first index // of 1 in a boolean array arr[] int first( bool arr[], int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low)/2; // Check if the element at middle index is first 1 if ( ( mid == 0 || arr[mid-1] == 0) && arr[mid] == 1) return mid; // If the element is 0, recur for right side else if (arr[mid] == 0) return first(arr, (mid + 1), high); // If element is not first 1, recur for left side else return first(arr, low, (mid -1)); } return -1; } // Function that returns index of row // with maximum number of 1s. int rowWithMax1s( bool mat[R][C]) { // Initialize max values int max_row_index = 0, max = -1; // Traverse for each row and count number of 1s // by finding the index of first 1 int i, index; for (i = 0; i < R; i++) { index = first (mat[i], 0, C-1); if (index != -1 && C-index > max) { max = C - index; max_row_index = i; } } return max_row_index; } // Driver Code int main() { bool mat[R][C] = { {0, 0, 0, 1}, {0, 1, 1, 1}, {1, 1, 1, 1}, {0, 0, 0, 0}}; printf ( "Index of row with maximum 1s is %d " , rowWithMax1s(mat)); return 0; } |
Java
// Java program to find the row // with maximum number of 1s import java.io.*; class GFG { static int R = 4 , C = 4 ; // Function to find the index of first index // of 1 in a boolean array arr[] static int first( int arr[], int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low) / 2 ; // Check if the element at middle index is first 1 if ((mid == 0 || (arr[mid - 1 ] == 0 )) && arr[mid] == 1 ) return mid; // If the element is 0, recur for right side else if (arr[mid] == 0 ) return first(arr, (mid + 1 ), high); // If element is not first 1, recur for left side else return first(arr, low, (mid - 1 )); } return - 1 ; } // Function that returns index of row // with maximum number of 1s. static int rowWithMax1s( int mat[][]) { // Initialize max values int max_row_index = 0 , max = - 1 ; // Traverse for each row and count number of // 1s by finding the index of first 1 int i, index; for (i = 0 ; i < R; i++) { index = first(mat[i], 0 , C - 1 ); if (index != - 1 && C - index > max) { max = C - index; max_row_index = i; } } return max_row_index; } // Driver Code public static void main(String[] args) { int mat[][] = { { 0 , 0 , 0 , 1 }, { 0 , 1 , 1 , 1 }, { 1 , 1 , 1 , 1 }, { 0 , 0 , 0 , 0 } }; System.out.println( "Index of row with maximum 1s is " + rowWithMax1s(mat)); } } // This code is contributed by 'Gitanjali'. |
Python 3
# Python3 program to find the row # with maximum number of 1s # Function to find the index # of first index of 1 in a # boolean array arr[] def first( arr, low, high): if high > = low: # Get the middle index mid = low + (high - low) / / 2 # Check if the element at # middle index is first 1 if (mid = = 0 or arr[mid - 1 ] = = 0 ) and arr[mid] = = 1 : return mid # If the element is 0, # recur for right side elif arr[mid] = = 0 : return first(arr, (mid + 1 ), high) # If element is not first 1, # recur for left side else : return first(arr, low, (mid - 1 )) return - 1 # Function that returns # index of row with maximum # number of 1s. def rowWithMax1s( mat): # Initialize max values R = len (mat) C = len (mat[ 0 ]) max_row_index = 0 max = - 1 # Traverse for each row and # count number of 1s by finding # the index of first 1 for i in range ( 0 , R): index = first (mat[i], 0 , C - 1 ) if index ! = - 1 and C - index > max : max = C - index max_row_index = i return max_row_index # Driver Code mat = [[ 0 , 0 , 0 , 1 ], [ 0 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ], [ 0 , 0 , 0 , 0 ]] print ( "Index of row with maximum 1s is" , rowWithMax1s(mat)) # This code is contributed # by shreyanshi_arun |
C#
// C# program to find the row with maximum // number of 1s using System; class GFG { public static int R = 4, C = 4; // Function to find the index of first index // of 1 in a boolean array arr[] public static int first( int [] arr, int low, int high) { if (high >= low) { // Get the middle index int mid = low + (high - low) / 2; // Check if the element at middle // index is first 1 if ((mid == 0 || (arr[mid - 1] == 0)) && arr[mid] == 1) { return mid; } // If the element is 0, recur // for right side else if (arr[mid] == 0) { return first(arr, (mid + 1), high); } // If element is not first 1, recur // for left side else { return first(arr, low, (mid - 1)); } } return -1; } // Function that returns index of row // with maximum number of 1s. public static int rowWithMax1s( int [][] mat) { // Initialize max values int max_row_index = 0, max = -1; // Traverse for each row and count number // of 1s by finding the index of first 1 int i, index; for (i = 0; i < R; i++) { index = first(mat[i], 0, C - 1); if (index != -1 && C - index > max) { max = C - index; max_row_index = i; } } return max_row_index; } // Driver Code public static void Main( string [] args) { int [][] mat = new int [][] { new int [] {0, 0, 0, 1}, new int [] {0, 1, 1, 1}, new int [] {1, 1, 1, 1}, new int [] {0, 0, 0, 0} }; Console.WriteLine( "Index of row with maximum 1s is " + rowWithMax1s(mat)); } } // This code is contributed by Shrikant13 |
PHP
<?php // PHP program to find the row // with maximum number of 1s define( "R" , 4); define( "C" , 4); // Function to find the index of first // index of 1 in a boolean array arr[] function first( $arr , $low , $high ) { if ( $high >= $low ) { // Get the middle index $mid = $low + intval (( $high - $low ) / 2); // Check if the element at middle // index is first 1 if (( $mid == 0 || $arr [ $mid - 1] == 0) && $arr [ $mid ] == 1) return $mid ; // If the element is 0, recur for // right side else if ( $arr [ $mid ] == 0) return first( $arr , ( $mid + 1), $high ); // If element is not first 1, recur // for left side else return first( $arr , $low , ( $mid - 1)); } return -1; } // Function that returns index of row // with maximum number of 1s. function rowWithMax1s( $mat ) { // Initialize max values $max_row_index = 0; $max = -1; // Traverse for each row and count number // of 1s by finding the index of first 1 for ( $i = 0; $i < R; $i ++) { $index = first ( $mat [ $i ], 0, (C - 1)); if ( $index != -1 && (C - $index ) > $max ) { $max = C - $index ; $max_row_index = $i ; } } return $max_row_index ; } // Driver Code $mat = array ( array (0, 0, 0, 1), array (0, 1, 1, 1), array (1, 1, 1, 1), array (0, 0, 0, 0)); echo "Index of row with maximum 1s is " . rowWithMax1s( $mat ); // This code is contributed by rathbhupendra ?> |
Output:
Index of row with maximum 1s is 2
Time Complexity: O(mLogn) where m is number of rows and n is number of columns in matrix.
The above solution can be optimized further. Instead of doing binary search in every row, we first check whether the row has more 1s than max so far. If the row has more 1s, then only count 1s in the row. Also, to count 1s in a row, we don’t do binary search in complete row, we do search in before the index of last max.
Following is an optimized version of the above solution.
C++
#include <bits/stdc++.h> using namespace std; // The main function that returns index // of row with maximum number of 1s. int rowWithMax1s( bool mat[R][C]) { int i, index; // Initialize max using values from first row. int max_row_index = 0; int max = first(mat[0], 0, C - 1); // Traverse for each row and count number of 1s // by finding the index of first 1 for (i = 1; i < R; i++) { // Count 1s in this row only if this row // has more 1s than max so far // Count 1s in this row only if this row // has more 1s than max so far if (max != -1 && mat[i][C - max - 1] == 1) { // Note the optimization here also index = first (mat[i], 0, C - max); if (index != -1 && C - index > max) { max = C - index; max_row_index = i; } } else { max = first(mat[i], 0, C - 1); } } return max_row_index; } // This code is contributed by rathbhupendra |
C
// The main function that returns index of row with maximum number of 1s. int rowWithMax1s( bool mat[R][C]) { int i, index; // Initialize max using values from first row. int max_row_index = 0; int max = first(mat[0], 0, C-1); // Traverse for each row and count number of 1s by finding the index // of first 1 for (i = 1; i < R; i++) { // Count 1s in this row only if this row has more 1s than // max so far // Count 1s in this row only if this row has more 1s than // max so far if (max != -1 && mat[i][C-max-1] == 1) { // Note the optimization here also index = first (mat[i], 0, C-max); if (index != -1 && C-index > max) { max = C - index; max_row_index = i; } } else { max = first(mat[i], 0, C - 1); } } return max_row_index; } |
Java
public class gfg { // The main function that returns index // of row with maximum number of 1s. static int rowWithMax1s( boolean mat[][]) { int i, index; // Initialize max using values from first row. int max_row_index = 0 ; int max = first(mat[ 0 ], 0 , C - 1 ); // Traverse for each row and count number of 1s // by finding the index of first 1 for (i = 1 ; i < R; i++) { // Count 1s in this row only if this row // has more 1s than max so far // Count 1s in this row only if this row // has more 1s than max so far if (max != - 1 && mat[i][C - max - 1 ] == 1 ) { // Note the optimization here also index = first (mat[i], 0 , C - max); if (index != - 1 && C - index > max) { max = C - index; max_row_index = i; } } else { max = first(mat[i], 0 , C - 1 ); } } return max_row_index; } } // This code is contributed by divyesh072019. |
Python3
# The main function that returns index # of row with maximum number of 1s. def rowWithMax1s(mat) : # Initialize max using values from first row. max_row_index = 0 ; max = first(mat[ 0 ], 0 , C - 1 ) # Traverse for each row and count number of 1s # by finding the index of first 1 for i in range ( 1 , R): # Count 1s in this row only if this row # has more 1s than max so far # Count 1s in this row only if this row # has more 1s than max so far if ( max ! = - 1 and mat[i][C - max - 1 ] = = 1 ): # Note the optimization here also index = first (mat[i], 0 , C - max ) if (index ! = - 1 and C - index > max ): max = C - index max_row_index = i else : max = first(mat[i], 0 , C - 1 ) return max_row_index; # This code is contributed by Dharanendra L V |
C#
using System; class GFG { // The main function that returns index // of row with maximum number of 1s. static int rowWithMax1s( bool [,] mat) { int i, index; // Initialize max using values from first row. int max_row_index = 0; int max = first(mat[0], 0, C - 1); // Traverse for each row and count number of 1s // by finding the index of first 1 for (i = 1; i < R; i++) { // Count 1s in this row only if this row // has more 1s than max so far // Count 1s in this row only if this row // has more 1s than max so far if (max != -1 && mat[i,C - max - 1] == 1) { // Note the optimization here also index = first (mat[i], 0, C - max); if (index != -1 && C - index > max) { max = C - index; max_row_index = i; } } else { max = first(mat[i], 0, C - 1); } } return max_row_index; } } // This code is contributed by divyeshrabadiya07. |
Javascript
<script> // The main function that returns index // of row with maximum number of 1s. function rowWithMax1s(mat) { let i, index; // Initialize max using values from first row. let max_row_index = 0; let max = first(mat[0], 0, C - 1); // Traverse for each row and count number of 1s // by finding the index of first 1 for (i = 1; i < R; i++) { // Count 1s in this row only if this row // has more 1s than max so far // Count 1s in this row only if this row // has more 1s than max so far if (max != -1 && mat[i][C - max - 1] == 1) { // Note the optimization here also index = first (mat[i], 0, C - max); if (index != -1 && C - index > max) { max = C - index; max_row_index = i; } } else { max = first(mat[i], 0, C - 1); } } return max_row_index; } // This code is contributed by suresh07 </script> |
The worst case time complexity of the above optimized version is also O(mLogn), the will solution work better on average. Thanks to Naveen Kumar Singh for suggesting the above solution.
The worst case of the above solution occurs for a matrix like following.
0 0 0 … 0 1
0 0 0 ..0 1 1
0 … 0 1 1 1
….0 1 1 1 1
Following method works in O(m+n) time complexity in worst case.
Step1: Get the index of first (or leftmost) 1 in the first row.
Step2: Do following for every row after the first row
…IF the element on left of previous leftmost 1 is 0, ignore this row.
…ELSE Move left until a 0 is found. Update the leftmost index to this index and max_row_index to be the current row.
The time complexity is O(m+n) because we can possibly go as far left as we came ahead in the first step.
Following is the implementation of this method.
C++
// The main function that returns index of row with maximum number of 1s. int rowWithMax1s( bool mat[R][C]) { // Initialize first row as row with max 1s int max_row_index = 0; // The function first() returns index of first 1 in row 0. // Use this index to initialize the index of leftmost 1 seen so far int j = first(mat[0], 0, C-1); if (j == -1) // if 1 is not present in first row j = C - 1; for ( int i = 1; i < R; i++) { // Move left until a 0 is found while (j >= 0 && mat[i][j] == 1) { j = j-1; // Update the index of leftmost 1 seen so far max_row_index = i; // Update max_row_index } } return max_row_index; } |
Java
// The main function that returns index of row with maximum number of 1s. static int rowWithMax1s( boolean mat[][]) { // Initialize first row as row with max 1s int max_row_index = 0 ; // The function first() returns index of first 1 in row 0. // Use this index to initialize the index of leftmost 1 seen so far int j = first(mat[ 0 ], 0 , C - 1 ); if (j == - 1 ) // if 1 is not present in first row j = C - 1 ; for ( int i = 1 ; i < R; i++) { // Move left until a 0 is found while (j >= 0 && mat[i][j] == 1 ) { j = j - 1 ; // Update the index of leftmost 1 seen so far max_row_index = i; // Update max_row_index } } return max_row_index; } // This code is contributed by rutvik_56. |
C#
// The main function that returns index of row with maximum number of 1s. static int rowWithMax1s( bool [,] mat) { // Initialize first row as row with max 1s int max_row_index = 0; // The function first() returns index of first 1 in row 0. // Use this index to initialize the index of leftmost 1 seen so far int j = first(mat[0], 0, C - 1); if (j == -1) // if 1 is not present in first row j = C - 1; for ( int i = 1; i < R; i++) { // Move left until a 0 is found while (j >= 0 && mat[i, j] == 1) { j = j - 1; // Update the index of leftmost 1 seen so far max_row_index = i; // Update max_row_index } } return max_row_index; } // This code is contributed by Dharanendra L V. |
Thanks to Tylor, Ankan and Palash for their inputs.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.