Given the roots of a quadratic equation **A** and **B**, the task is to find the equation.**Note**: The given roots are integral.

**Examples:**

Input:A = 2, B = 3Output:x^2 – (5x) + (6) = 0

x^{2}– 5x + 6 = 0

x^{2}-3x -2x + 6 = 0

x(x – 3) – 2(x – 3) = 0

(x – 3) (x – 2) = 0

x = 2, 3

Input:A = 5, B = 10Output:x^2 – (15x) + (50) = 0

**Approach:** If the roots of a quadratic equation **ax ^{2} + bx + c = 0** are

**A**and

**B**then it known that

**A + B = – b / a**and

**A * B = c * a**.

Now, ax

^{2}+ bx + c = 0 can be written as

x

^{2}+ (b / a)x + (c / a) = 0 (Since, a != 0)

x

^{2}– (A + B)x + (A * B) = 0, [Since, A + B = -b * a and A * B = c * a]

i.e.

**x**

^{2}– (Sum of the roots)x + Product of the roots = 0Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the quadratic` `// equation whose roots are a and b` `void` `findEquation(` `int` `a, ` `int` `b)` `{` ` ` `int` `sum = (a + b);` ` ` `int` `product = (a * b);` ` ` `cout << ` `"x^2 - ("` `<< sum << ` `"x) + ("` ` ` `<< product << ` `") = 0"` `;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `a = 2, b = 3;` ` ` `findEquation(a, b);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the above approach` `class` `GFG` `{` ` ` ` ` `// Function to find the quadratic` ` ` `// equation whose roots are a and b` ` ` `static` `void` `findEquation(` `int` `a, ` `int` `b)` ` ` `{` ` ` `int` `sum = (a + b);` ` ` `int` `product = (a * b);` ` ` `System.out.println(` `"x^2 - ("` `+ sum +` ` ` `"x) + ("` `+ product + ` `") = 0"` `);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main(String args[])` ` ` `{` ` ` `int` `a = ` `2` `, b = ` `3` `;` ` ` ` ` `findEquation(a, b);` ` ` `}` `}` `// This code is contributed by AnkitRai01` |

## Python3

`# Python3 implementation of the approach` `# Function to find the quadratic` `# equation whose roots are a and b` `def` `findEquation(a, b):` ` ` `summ ` `=` `(a ` `+` `b)` ` ` `product ` `=` `(a ` `*` `b)` ` ` `print` `(` `"x^2 - ("` `, summ,` ` ` `"x) + ("` `, product, ` `") = 0"` `)` `# Driver code` `a ` `=` `2` `b ` `=` `3` `findEquation(a, b)` `# This code is contributed by Mohit Kumar` |

## C#

`// C# implementation of the above approach` `using` `System;` `class` `GFG` `{` ` ` ` ` `// Function to find the quadratic` ` ` `// equation whose roots are a and b` ` ` `static` `void` `findEquation(` `int` `a, ` `int` `b)` ` ` `{` ` ` `int` `sum = (a + b);` ` ` `int` `product = (a * b);` ` ` `Console.WriteLine(` `"x^2 - ("` `+ sum +` ` ` `"x) + ("` `+ product + ` `") = 0"` `);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `a = 2, b = 3;` ` ` ` ` `findEquation(a, b);` ` ` `}` `}` `// This code is contributed by CodeMech.` |

## Javascript

`<script>` `// Javascript implementation of the above approach` `// Function to find the quadratic` `// equation whose roots are a and b` `function` `findEquation(a, b)` `{` ` ` `var` `sum = (a + b);` ` ` `var` `product = (a * b);` ` ` `document.write(` `"x^2 - ("` `+ sum +` ` ` `"x) + ("` `+ product +` ` ` `") = 0"` `);` `}` `// Driver Code` `var` `a = 2, b = 3;` `findEquation(a, b);` `// This code is contributed by Ankita saini` ` ` `</script>` |

**Output:**

x^2 - (5x) + (6) = 0

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**