Find the possible permutation of the bits of N

Given an integer N, the task is to find whether the bits of N can be arranged in alternating manner i.e. either 0101… or 10101…. Assume that N is represented as a 32 bit integer.

Examples:

Input: N = 23
Output: No
“00000000000000000000000000010111” is the binary representation of 23
and the required permutation of bits is not possible.



Input: N = 524280
Output: Yes
binary(524280) = “00000000000001111111111111111000” which can be
rearranged to “01010101010101010101010101010101”.

Approach: Since the given integer has to be represented in 32 bits and the number of 1s must be equal to the number of 0s in its binary representation to satisfy the given condition. So, the number of set bits in N must be 16 which can be easily calculated using __builtin_popcount()

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
const int TOTAL_BITS = 32;
  
// Function that returns true if it is
// possible to arrange the bits of
// n in alternate fashion
bool isPossible(int n)
{
  
    // To store the count of 1s in the
    // binary representation of n
    int cnt = __builtin_popcount(n);
  
    // If the number set bits and the
    // number of unset bits is equal
    if (cnt == TOTAL_BITS / 2)
        return true;
    return false;
}
  
// Driver code
int main()
{
    int n = 524280;
  
    if (isPossible(n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
      
class GFG
{
  
static int TOTAL_BITS = 32;
  
// Function that returns true if it is
// possible to arrange the bits of
// n in alternate fashion
static boolean isPossible(int n)
{
  
    // To store the count of 1s in the
    // binary representation of n
    int cnt = Integer.bitCount(n);
  
    // If the number set bits and the
    // number of unset bits is equal
    if (cnt == TOTAL_BITS / 2)
        return true;
    return false;
}
  
// Driver code
static public void main (String []arr)
{
    int n = 524280;
  
    if (isPossible(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
TOTAL_BITS = 32
  
# Function that returns true if it is 
# possible to arrange the bits of 
# n in alternate fashion 
def isPossible(n) :
  
    # To store the count of 1s in the 
    # binary representation of n 
    cnt = bin(n).count('1'); 
  
    # If the number set bits and the 
    # number of unset bits is equal 
    if (cnt == TOTAL_BITS // 2) :
        return True
          
    return False
  
# Driver code 
if __name__ == "__main__"
  
    n = 524280
  
    if (isPossible(n)) :
        print("Yes"); 
    else :
        print("No"); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System; 
      
class GFG
{
static int TOTAL_BITS = 32;
  
static int CountBits(int value)
{
    int count = 0;
    while (value != 0)
    {
        count++;
        value &= value - 1;
    }
    return count;
}
  
// Function that returns true if it is
// possible to arrange the bits of
// n in alternate fashion
static bool isPossible(int n)
{
  
    // To store the count of 1s in the
    // binary representation of n
    int cnt = CountBits(n);
  
    // If the number set bits and the
    // number of unset bits is equal
    if (cnt == TOTAL_BITS / 2)
        return true;
    return false;
}
  
// Driver code
public static void Main (String []arr)
{
    int n = 524280;
  
    if (isPossible(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
  
// This code is contributed by Mohit kumar

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.