Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find the numbers from 1 to N that contains exactly k non-zero digits

  • Last Updated : 24 Nov, 2021

Prerequisites: Dynamic Programming, DigitDP
Given two integers N and K. The task is to find the number of integers between 1 and N (inclusive) that contains exactly K non-zero digits when written in base ten.

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 100, K = 1 
Output: 19 
Explanation: 
The digits with exactly 1 non zero digits between 1 and 100 are: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100



Input: N = 25, K = 2 
Output: 14 
Explanation: 
The digits with exactly 2 non zero digits between 1 and 25 are: 
11, 12, 13, 14, 15, 16, 17, 
18, 19, 21, 22, 23, 24, 25 

Approach: It is enough to consider the integers of N digits, by filling the higher digits with 0 if necessary. This problem can be solved by applying the method called digit DP

  • dp[i][0][j] = The higher i digits have already been decided, and there are j non-zero digits, and it has already been determined that it is less than N.
  • dp[i][1][j] = The higher i digits have already been decided, and there are j non-zero digits, and it has not yet been determined that it is less than N.

After computing the above dp, the desired answer is dp[L][0][K] + dp[L][1][K], where L is the number of digits of N

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find number less than N
// having k non-zero digits
int k_nonzero_numbers(string s, int n, int k)
{
    // Store the memorised values
    int dp[n + 1][2][k + 1];
 
    // Initialise
    for (int i = 0; i <= n; i++)
        for (int j = 0; j < 2; j++)
            for (int x = 0; x <= k; x++)
                dp[i][j][x] = 0;
 
    // Base
    dp[0][0][0] = 1;
 
    // Calculate all states
    // For every state, from numbers 1 to N,
    // the count of numbers which contain exactly j
    // non zero digits is being computed and updated
    // in the dp array.
    for (int i = 0; i < n; ++i) {
        int sm = 0;
        while (sm < 2) {
            for (int j = 0; j < k + 1; ++j) {
                int x = 0;
                while (x <= (sm ? 9 : s[i] - '0')) {
                    dp[i + 1][sm || x < (s[i] - '0')][j + (x > 0)]
                        += dp[i][sm][j];
                    ++x;
                }
            }
            ++sm;
        }
    }
 
    // Return the required answer
    return dp[n][0][k] + dp[n][1][k];
}
 
// Driver code
int main()
{
    string s = "25";
 
    int k = 2;
 
    int n = s.size();
 
    // Function call
    cout << k_nonzero_numbers(s, n, k);
 
    return 0;
}

Java




// Java implementation of the above approach
class Geeks{
 
// Function to find number less than N
// having k non-zero digits
static int k_nonzero_numbers(String s, int n, int k)
{
     
    // Store the memorised values
    int dp[][][] = new int[n + 1][2][k + 1];
 
    // Initialise
    for(int i = 0; i <= n; i++)
        for(int j = 0; j < 2; j++)
            for(int x = 0; x <= k; x++)
                dp[i][j][x] = 0;
 
    // Base
    dp[0][0][0] = 1;
 
    // Calculate all states
    // For every state, from numbers 1 to N,
    // the count of numbers which contain exactly j
    // non zero digits is being computed and updated
    // in the dp array.
    for(int i = 0; i < n; ++i)
    {
        int sm = 0;
        while (sm < 2)
        {
            for(int j = 0; j < k + 1; ++j)
            {
                int x = 0;
                while (x <= (sm !=
                       0 ? 9 :s.charAt(i) - '0'))
                {
                    if (j + (x > 0 ? 1 : 0) < k + 1)
                    {
                        dp[i + 1][(sm != 0 || x <
                                  (s.charAt(i) - '0')) ?
                                   1 : 0][j + (x > 0 ?
                                   1 : 0)] += dp[i][sm][j];
                    }
                    ++x;
                }
            }
            ++sm;
        }
    }
 
    // Return the required answer
    return dp[n][0][k] + dp[n][1][k];
}
 
// Driver code
public static void main(String[] args)
{
    String s = "25";
 
    int k = 2;
 
    int n = s.length();
 
    // Function call
    System.out.println(k_nonzero_numbers(s, n, k));
}
}
 
// This code is contributed by Rajnis09

Python3




# Python3 implementation of the above approach
 
# Function to find number less than N
# having k non-zero digits
def k_nonzero_numbers(s, n, k):
     
    # Store the memorised values
    dp = [[[ 0 for i in range(k + 2)]
               for i in range(2)]
               for i in range(n + 2)]
 
    # Initialise
    for i in range(n + 1):
        for j in range(2):
            for x in range(k + 1):
                dp[i][j][x] = 0
 
    # Base
    dp[0][0][0] = 1
 
    # Calculate all states
    # For every state, from numbers 1 to N,
    # the count of numbers which contain
    # exactly j non zero digits is being
    # computed and updated in the dp array.
    for i in range(n):
        sm = 0
         
        while (sm < 2):
            for j in range(k + 1):
                x = 0
                y = 0
                if sm:
                    y = 9
                else:
                    y = ord(s[i]) - ord('0')
 
                while (x <= y):
                    dp[i + 1][(sm or x < (
                    ord(s[i]) - ord('0')))][j +
                     (x > 0)] += dp[i][sm][j]
                    x += 1
                     
            sm += 1
 
    # Return the required answer
    return dp[n][0][k] + dp[n][1][k]
 
# Driver code
if __name__ == '__main__':
     
    s = "25"
 
    k = 2
 
    n = len(s)
 
    # Function call
    print(k_nonzero_numbers(s, n, k))
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the above approach
using System;
using System.Collections;
 
class GFG{
 
// Function to find number less than N
// having k non-zero digits
static int k_nonzero_numbers(string s, int n,
                                       int k)
{
     
    // Store the memorised values
    int [,,]dp = new int[n + 1, 2, k + 1];
 
    // Initialise
    for(int i = 0; i <= n; i++)
        for(int j = 0; j < 2; j++)
            for(int x = 0; x <= k; x++)
                dp[i, j, x] = 0;
 
    // Base
    dp[0, 0, 0] = 1;
 
    // Calculate all states
    // For every state, from numbers 1 to N,
    // the count of numbers which contain exactly j
    // non zero digits is being computed and updated
    // in the dp array.
    for(int i = 0; i < n; ++i)
    {
        int sm = 0;
        while (sm < 2)
        {
            for(int j = 0; j < k + 1; ++j)
            {
                int x = 0;
                while (x <= (sm !=
                       0 ? 9 : s[i]- '0'))
                {
                    if (j + (x > 0 ? 1 : 0) < k + 1)
                    {
                        dp[i + 1, ((sm != 0 || x <
                        (s[i] - '0')) ? 1 : 0),
                           j + (x > 0 ? 1 : 0)] +=
                         dp[i, sm, j];
                    }
                    ++x;
                }
            }
            ++sm;
        }
    }
 
    // Return the required answer
    return dp[n, 0, k] + dp[n, 1, k];
}
 
// Driver code
public static void Main(string[] args)
{
    string s = "25";
    int k = 2;
    int n = s.Length;
 
    // Function call
    Console.Write(k_nonzero_numbers(s, n, k));
}
}
 
// This code is contributed by rutvik_56

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find number less than N
// having k non-zero digits
function k_nonzero_numbers(s,n,k)
{
    // Store the memorised values
    let dp = new Array(n + 1);
  
    // Initialise
    for(let i = 0; i <= n; i++)
    {
        dp[i]=new Array(2);
        for(let j = 0; j < 2; j++)
        {
            dp[i][j] = new Array(k+1);
            for(let x = 0; x <= k; x++)
                dp[i][j][x] = 0;
        }
    }
  
    // Base
    dp[0][0][0] = 1;
  
    // Calculate all states
    // For every state, from numbers 1 to N,
    // the count of numbers which contain exactly j
    // non zero digits is being computed and updated
    // in the dp array.
    for(let i = 0; i < n; ++i)
    {
        let sm = 0;
        while (sm < 2)
        {
            for(let j = 0; j < k + 1; ++j)
            {
                let x = 0;
                while (x <= (sm !=
                       0 ? 9 :s[i].charCodeAt(0) - '0'.charCodeAt(0)))
                {
                    if (j + (x > 0 ? 1 : 0) < k + 1)
                    {
                        dp[i + 1][(sm != 0 || x <
                                  (s[i].charCodeAt(0) - '0'.charCodeAt(0))) ?
                                   1 : 0][j + (x > 0 ?
                                   1 : 0)] += dp[i][sm][j];
                    }
                    ++x;
                }
            }
            ++sm;
        }
    }
  
    // Return the required answer
    return dp[n][0][k] + dp[n][1][k];
}
 
// Driver code
let s = "25";
 
let k = 2;
let n = s.length;
 
// Function call
document.write(k_nonzero_numbers(s, n, k));
 
// This code is contributed by unknown2108
</script>
Output: 
14

 

Time Complexity: O(LK) where L is the number of digits in N. 

Auxiliary Space: O(N * K * 2)
Note: The two for loops used to calculate the state which from [0, 1] and [0, 9] respectively are considered as a constant multiplication.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :