Find the number of sub arrays in the permutation of first N natural numbers such that their median is M

Given an array arr[] containing the permutation of first N natural numbers and an integer M ≤ N. The task is to find the number of sub-arrays such that the median of the sequence is M.
The median of a sequence is the value of the element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.

Examples:

Input: a[] = { 2, 4, 5, 3, 1}, M = 4
Output: 4
Required sub-arrays are {2, 4, 5}, {4}, {4, 5} and {4, 5, 3}.



Input: a[] = { 1, 2, 3, 4, 5}, M = 5
Output: 1

Approach: The segment p[l..r] has median equals M if and only if M belongs to it and less = greater or less = greater – 1, where less is number of elements in p[l..r] that are strictly less than M and greater is number of elements in p[l..r] that are strictly greater than M. Here we’ve used a fact that p is a permutation (on p[l..r] there is exactly one occurrence of M).

In other words, M belongs to p[l..r] and the value greater – less equals to 0 or 1.

Calculate prefix sums sum[0..n], where sum[i] the value greater-less on the prefix of the length i (i.e., on the subarray p[0..i-1]). For fixed value r it is easy to calculate the number of such l that p[l..r] is suitable. At first, check that M met on [0..r]. Valid values l are such indices that: no M on [0..l-1] and sum[l]=sum[r] or sum[r]=sum[l]+1.

Let’s maintain a number of prefix sums sum[i] to the left of M for each value. We can use just a map c, where c[s] is a number of such indices l that sum[l]=s and l are to the left of m.

So for each r that p[0..r] contains m do ans += c[sum] + c[sum – 1], where sum is the current value greater-less.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of sub-arrays
// in the given permutation of first n natural
// numbers such that their median is m
int segments(int n, int p[], int m)
{
    map<int, int> c;
    c[0] = 1;
    bool has = false;
    int sum = 0;
    long long ans = 0;
    for (int r = 0; r < n; r++) {
  
        // If element is less than m
        if (p[r] < m)
            sum--;
  
        // If element greater than m
        else if (p[r] > m)
            sum++;
  
        // If m is found
        if (p[r] == m)
            has = true;
  
        // Count the answer
        if (has)
            ans += c[sum] + c[sum - 1];
  
        // Increment sum
        else
            c[sum]++;
    }
  
    return ans;
}
  
// Driver code
int main()
{
    int a[] = { 2, 4, 5, 3, 1 };
    int n = sizeof(a) / sizeof(a[0]);
    int m = 4;
    cout << segments(n, a, m);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
import java.util.HashMap;
  
class GFG 
{
  
    // Function to return the count of sub-arrays
    // in the given permutation of first n natural
    // numbers such that their median is m
    public static int segments(int n, int[] p, int m)
    {
        HashMap<Integer, Integer> c = new HashMap<>();
        c.put(0, 1);
        boolean has = false;
        int sum = 0;
        int ans = 0;
        for (int r = 0; r < n; r++) 
        {
  
            // If element is less than m
            if (p[r] < m)
                sum--;
  
            // If element greater than m
            else if (p[r] > m)
                sum++;
  
            // If m is found
            if (p[r] == m)
                has = true;
  
            // Count the answer
            if (has)
                ans += (c.get(sum) == null ? 0
                        c.get(sum)) + 
                       (c.get(sum - 1) == null ? 0
                        c.get(sum - 1));
  
            // Increment sum
            else
                c.put(sum, c.get(sum) == null ? 1
                           c.get(sum) + 1);
        }
        return ans;
    }
  
    // Driver code
    public static void main(String[] args) 
    {
        int[] a = { 2, 4, 5, 3, 1 };
        int n = a.length;
        int m = 4;
        System.out.println(segments(n, a, m));
    }
}
  
// This code is contributed by
// sanjeev2552

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return the count of sub-arrays
# in the given permutation of first n natural
# numbers such that their median is m
def segments(n, p, m):
  
    c = dict()
  
    c[0] = 1
  
    has = False
  
    Sum = 0
  
    ans = 0
  
    for r in range(n):
  
        # If element is less than m
        if (p[r] < m):
            Sum -= 1
  
        # If element greater than m
        elif (p[r] > m):
            Sum += 1
  
        # If m is found
        if (p[r] == m):
            has = True
  
        # Count the answer
        if (has):
            if(Sum in c.keys()):
                ans += c[Sum]
            if Sum-1 in c.keys():
                ans += c[Sum - 1
  
        # Increment Sum
        else:
            c[Sum] = c.get(Sum, 0) + 1
  
    return ans
  
# Driver code
a = [2, 4, 5, 3, 1]
n = len(a)
m = 4
print(segments(n, a, m))
  
# This code is contributed by mohit kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
using System.Collections.Generic;             
  
class GFG 
{
  
    // Function to return the count of sub-arrays
    // in the given permutation of first n natural
    // numbers such that their median is m
    public static int segments(int n, int[] p, int m)
    {
        Dictionary<int, int> c = new Dictionary<int, int>();
        c.Add(0, 1);
        bool has = false;
        int sum = 0;
        int ans = 0;
        for (int r = 0; r < n; r++) 
        {
  
            // If element is less than m
            if (p[r] < m)
                sum--;
  
            // If element greater than m
            else if (p[r] > m)
                sum++;
  
            // If m is found
            if (p[r] == m)
                has = true;
  
            // Count the answer
            if (has)
                ans += (!c.ContainsKey(sum) ? 0 : 
                         c[sum]) + 
                    (!c.ContainsKey(sum - 1) ? 0 : 
                      c[sum - 1]);
  
            // Increment sum
            else
                c.Add(sum, !c.ContainsKey(sum) ? 1 : 
                            c[sum] + 1);
        }
        return ans;
    }
  
    // Driver code
    public static void Main(String[] args) 
    {
        int[] a = { 2, 4, 5, 3, 1 };
        int n = a.Length;
        int m = 4;
        Console.WriteLine(segments(n, a, m));
    }
}
  
// This code is contributed by 29AjayKumar

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
  
// Function to return the count of sub-arrays 
// in the given permutation of first n natural 
// numbers such that their median is m 
function segments($n, $p, $m
    $c = array(); 
    $c[0] = 1; 
      
    $has = false; 
    $sum = 0; 
    $ans = 0; 
      
    for ($r = 0; $r < $n; $r++) 
    
  
        // If element is less than m 
        if ($p[$r] < $m
            $sum--; 
  
        // If element greater than m 
        else if ($p[$r] > $m
            $sum++; 
  
        // If m is found 
        if ($p[$r] == $m
            $has = true; 
  
        // Count the answer 
        if ($has
            $ans += $c[$sum] + $c[$sum - 1]; 
  
        // Increment sum 
        else
            $c[$sum]++; 
    
  
    return $ans
  
// Driver code 
$a = array( 2, 4, 5, 3, 1 ); 
$n = count($a);
$m = 4; 
  
echo segments($n, $a, $m); 
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

4


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.