Skip to content
Related Articles
Find the number of divisors of all numbers in the range [1, n]
• Difficulty Level : Medium
• Last Updated : 31 May, 2021

Given an integer N. The task is to find the number of divisors of all the numbers in the range [1, N]

Examples:

Input: N = 5
Output: 1 2 2 3 2
divisors(1) = 1
divisors(2) = 1 and 2
divisors(3) = 1 and 3
divisors(4) = 1, 2 and 4
divisors(5) = 1 and 5

Input: N = 10
Output: 1 2 2 3 2 4 2 4 3 4

Approach: Create an array arr[] of the size (N + 1) where arr[i] stores the number of divisors of i. Now for every j from the range [1, N], increment all the elements which are divisible by j
For example, if j = 3 then update arr, arr, arr, …

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to find the number of divisors``// of all numbers in the range [1, n]``void` `findDivisors(``int` `n)``{` `    ``// Array to store the count``    ``// of divisors``    ``int` `div``[n + 1];``    ``memset``(``div``, 0, ``sizeof` `div``);` `    ``// For every number from 1 to n``    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``// Increase divisors count for``        ``// every number divisible by i``        ``for` `(``int` `j = 1; j * i <= n; j++)``            ``div``[i * j]++;``    ``}` `    ``// Print the divisors``    ``for` `(``int` `i = 1; i <= n; i++)``        ``cout << ``div``[i] << ``" "``;``}` `// Driver code``int` `main()``{``    ``int` `n = 10;``    ``findDivisors(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach` `class` `GFG``{``    ` `    ``// Function to find the number of divisors``    ``// of all numbers in the range [1, n]``    ``static` `void` `findDivisors(``int` `n)``    ``{``    ` `        ``// Array to store the count``        ``// of divisors``        ``int``[] div = ``new` `int``[n + ``1``];``    ` `        ``// For every number from 1 to n``        ``for` `(``int` `i = ``1``; i <= n; i++)``        ``{``    ` `            ``// Increase divisors count for``            ``// every number divisible by i``            ``for` `(``int` `j = ``1``; j * i <= n; j++)``                ``div[i * j]++;``        ``}``    ` `        ``// Print the divisors``        ``for` `(``int` `i = ``1``; i <= n; i++)``            ``System.out.print(div[i]+``" "``);``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `n = ``10``;``        ``findDivisors(n);``    ``}``}` `// This code is contributed by Ryuga`

## Python3

 `# Python3 implementation of the approach``# Function to find the number of divisors``# of all numbers in the range [1,n]``def` `findDivisors(n):``    ` `    ``# List to store the count``    ``# of divisors``    ``div ``=` `[``0` `for` `i ``in` `range``(n ``+` `1``)]``    ` `    ``# For every number from 1 to n``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ` `        ``# Increase divisors count for``        ``# every number divisible by i``        ``for` `j ``in` `range``(``1``, n ``+` `1``):``            ``if` `j ``*` `i <``=` `n:``                ``div[i ``*` `j] ``+``=` `1` `    ``# Print the divisors``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ``print``(div[i], end ``=` `" "``)` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ``n ``=` `10``    ``findDivisors(n)` `# This code is contributed by``# Vivek Kumar Singh`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `// Function to find the number of divisors``// of all numbers in the range [1, n]``static` `void` `findDivisors(``int` `n)``{` `    ``// Array to store the count``    ``// of divisors``    ``int``[] div = ``new` `int``[n + 1];` `    ``// For every number from 1 to n``    ``for` `(``int` `i = 1; i <= n; i++)``    ``{` `        ``// Increase divisors count for``        ``// every number divisible by i``        ``for` `(``int` `j = 1; j * i <= n; j++)``            ``div[i * j]++;``    ``}` `    ``// Print the divisors``    ``for` `(``int` `i = 1; i <= n; i++)``        ``Console.Write(div[i]+``" "``);``}` `// Driver code``static` `void` `Main()``{``    ``int` `n = 10;``    ``findDivisors(n);``}``}` `// This code is contributed by mits`

## PHP

 ``

## Javascript

 ``
Output:
`1 2 2 3 2 4 2 4 3 4`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up