# Find the number of distinct islands in a 2D matrix

Given a boolean 2D matrix. The task is to find the number of distinct islands where a group of connected 1s (horizontally or vertically) forms an island. Two islands are considered to be distinct if and only if one island is equal to another (not rotated or reflected).

**Examples:**

Input:grid[][] =

{{1, 1, 0, 0, 0},

1, 1, 0, 0, 0},

0, 0, 0, 1, 1},

0, 0, 0, 1, 1}}

Output:1

Island 1, 1 at the top left corner is same as island 1, 1 at the bottom right corner

Input:grid[][] =

{{1, 1, 0, 1, 1},

1, 0, 0, 0, 0},

0, 0, 0, 0, 1},

1, 1, 0, 1, 1}}

Output:3

Distinct islands in the example above are: 1, 1 at the top left corner; 1, 1 at the top right corner and 1 at the bottom right corner. We ignore the island 1, 1 at the bottom left corner since 1, 1 it is identical to the top right corner.

**Approach:** This problem is an extension of the problem Number of Islands.

The core of the question is to know if 2 islands are equal. The primary criteria is that the number of 1’s should be same in both. But this cannot be the only criteria as we have seen in example 2 above. So how do we know? We could use the position/coordinates of the 1’s.

If we take the first coordinates of any island as a base point and then compute the coordinates of other points from the base point, we can eliminate duplicates to get the distinct count of islands. So, using this approach, the coordinates for the 2 islands in example 1 above can be represented as: [(0, 0), (0, 1), (1, 0), (1, 1)].

**Below is the implementation of above approach:**

## C++

`// C++ implementation of above approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// 2D array for the storing the horizontal and vertical ` `// directions. (Up, left, down, right} ` `vector<vector<` `int` `> > dirs = { { 0, -1 }, ` ` ` `{ -1, 0 }, ` ` ` `{ 0, 1 }, ` ` ` `{ 1, 0 } }; ` ` ` `// Function to perform dfs of the input grid ` `void` `dfs(vector<vector<` `int` `> >& grid, ` `int` `x0, ` `int` `y0, ` ` ` `int` `i, ` `int` `j, vector<pair<` `int` `, ` `int` `> >& v) ` `{ ` ` ` `int` `rows = grid.size(), cols = grid[0].size(); ` ` ` ` ` `if` `(i < 0 || i >= rows || i < 0 ` ` ` `|| j >= cols || grid[i][j] <= 0) ` ` ` `return` `; ` ` ` ` ` `// marking the visited element as -1 ` ` ` `grid[i][j] *= -1; ` ` ` ` ` `// computing coordinates with x0, y0 as base ` ` ` `v.push_back({ i - x0, j - y0 }); ` ` ` ` ` `// repeat dfs for neighbors ` ` ` `for` `(` `auto` `dir : dirs) { ` ` ` `dfs(grid, x0, y0, i + dir[0], j + dir[1], v); ` ` ` `} ` `} ` ` ` `// Main function that returns distinct count of islands in ` `// a given boolean 2D matrix ` `int` `countDistinctIslands(vector<vector<` `int` `> >& grid) ` `{ ` ` ` `int` `rows = grid.size(); ` ` ` `if` `(rows == 0) ` ` ` `return` `0; ` ` ` ` ` `int` `cols = grid[0].size(); ` ` ` `if` `(cols == 0) ` ` ` `return` `0; ` ` ` ` ` `set<vector<pair<` `int` `, ` `int` `> > > coordinates; ` ` ` ` ` `for` `(` `int` `i = 0; i < rows; ++i) { ` ` ` `for` `(` `int` `j = 0; j < cols; ++j) { ` ` ` ` ` `// If a cell is not 1 ` ` ` `// no need to dfs ` ` ` `if` `(grid[i][j] != 1) ` ` ` `continue` `; ` ` ` ` ` `// vector to hold coordinates ` ` ` `// of this island ` ` ` `vector<pair<` `int` `, ` `int` `> > v; ` ` ` `dfs(grid, i, j, i, j, v); ` ` ` ` ` `// insert the coordinates for ` ` ` `// this island to set ` ` ` `coordinates.insert(v); ` ` ` `} ` ` ` `} ` ` ` ` ` `return` `coordinates.size(); ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `vector<vector<` `int` `> > grid = { { 1, 1, 0, 1, 1 }, ` ` ` `{ 1, 0, 0, 0, 0 }, ` ` ` `{ 0, 0, 0, 0, 1 }, ` ` ` `{ 1, 1, 0, 1, 1 } }; ` ` ` ` ` `cout << ` `"Number of distinct islands is "` ` ` `<< countDistinctIslands(grid); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python3

`# Python implementation of above approach ` ` ` `# 2D array for the storing the horizontal and vertical ` `# directions. (Up, left, down, right ` `dirs ` `=` `[ [ ` `0` `, ` `-` `1` `], ` ` ` `[ ` `-` `1` `, ` `0` `], ` ` ` `[ ` `0` `, ` `1` `], ` ` ` `[ ` `1` `, ` `0` `] ] ` ` ` `# Function to perform dfs of the input grid ` `def` `dfs(grid, x0, y0, i, j, v): ` ` ` `rows ` `=` `len` `(grid) ` ` ` `cols ` `=` `len` `(grid[` `0` `]) ` ` ` ` ` `if` `i < ` `0` `or` `i >` `=` `rows ` `or` `i < ` `0` `or` `j >` `=` `cols ` `or` `grid[i][j] <` `=` `0` `: ` ` ` `return` ` ` `# marking the visited element as -1 ` ` ` `grid[i][j] ` `*` `=` `-` `1` ` ` ` ` `# computing coordinates with x0, y0 as base ` ` ` `v.append( [i ` `-` `x0, j ` `-` `y0] ) ` ` ` ` ` `# repeat dfs for neighbors ` ` ` `for` `dir` `in` `dirs: ` ` ` `dfs(grid, x0, y0, i ` `+` `dir` `[` `0` `], j ` `+` `dir` `[` `1` `], v) ` ` ` ` ` ` ` `# Main function that returns distinct count of islands in ` `# a given boolean 2D matrix ` `def` `countDistinctIslands(grid): ` ` ` `rows ` `=` `len` `(grid) ` ` ` `if` `rows ` `=` `=` `0` `: ` ` ` `return` `0` ` ` ` ` `cols ` `=` `len` `(grid[` `0` `]) ` ` ` `if` `cols ` `=` `=` `0` `: ` ` ` `return` `0` ` ` ` ` `coordinates ` `=` `[] ` ` ` ` ` `for` `i ` `in` `range` `(rows): ` ` ` `for` `j ` `in` `range` `(cols): ` ` ` ` ` `# If a cell is not 1 ` ` ` `# no need to dfs ` ` ` `if` `grid[i][j] !` `=` `1` `: ` ` ` `continue` ` ` ` ` `# to hold coordinates ` ` ` `# of this island ` ` ` `v ` `=` `[] ` ` ` `dfs(grid, i, j, i, j, v) ` ` ` ` ` `# insert the coordinates for ` ` ` `# this island to set ` ` ` `coordinates.append(v) ` ` ` ` ` `return` `len` `(coordinates) ` ` ` `# Driver code ` `grid ` `=` `[[ ` `1` `, ` `1` `, ` `0` `, ` `1` `, ` `1` `], ` `[ ` `1` `, ` `0` `, ` `0` `, ` `0` `, ` `0` `], ` `[ ` `0` `, ` `0` `, ` `0` `, ` `0` `, ` `1` `], ` `[ ` `1` `, ` `1` `, ` `0` `, ` `1` `, ` `1` `] ] ` ` ` `print` `(` `"Number of distinct islands is"` `,countDistinctIslands(grid)) ` ` ` `# This code is contributed by ankush_953 ` |

*chevron_right*

*filter_none*

**Output:**

Number of distinct islands is 3

** Time complexity: ** O(rows * cols)

** Space complexity: ** O(rows * cols)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: **DSA Self Paced**. Become industry ready at a student-friendly price.

## Recommended Posts:

- Find the number of islands | Set 1 (Using DFS)
- Find the number of Islands | Set 2 (Using Disjoint Set)
- Find distinct elements common to all rows of a matrix
- Minimum number of Water to Land conversion to make two islands connected in a Grid
- Find row number of a binary matrix having maximum number of 1s
- Count number of islands where every island is row-wise and column-wise separated
- Find number of cavities in a matrix
- Find Number of Even cells in a Zero Matrix after Q queries
- Find alphabet in a Matrix which has maximum number of stars around it
- Find row with maximum and minimum number of zeroes in given Matrix
- Find number of transformation to make two Matrix Equal
- Find the minimum number of moves needed to move from one cell of matrix to another
- Islands in a graph using BFS
- Minimum number of steps to convert a given matrix into Upper Hessenberg matrix
- Minimum number of steps to convert a given matrix into Diagonally Dominant Matrix
- Number of distinct ways to represent a number as sum of K unique primes
- Find trace of matrix formed by adding Row-major and Column-major order of same matrix
- Find distinct integers for a triplet with given product
- Queries for number of distinct integers in Suffix
- Number of strictly increasing Buildings from right with distinct Colors

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.