Find the number after successive division

Given two arrays div and rem which hold the values for divisors and remainders, the task is to find the number which after being successively divided by the elements of the div array leaves remainder which are in the rem array.

Note: The quotient from the first division will be divided by the second element and then the resultant quotient will be divided by the third (matching the remainders given) and so on.

Examples:

Input: div[] = {3, 5, 7}, rem[] = {1, 3, 5}
Output: 85
85 on division with 3 leaves remainder 1 with quotient 28
28 on division with 5 leaves remainder 3 with quotient 5
5 on division with 7 leaves remainder 5

Input: div[] = {7, 9}, rem[] = {2, 2}
Output: 16

Approach:

  • Store the value of the last remainder in a variable say num.
  • Traverse the array backwards from n-2 to 0 and update the num as num = num * div[i] + rem[i]
  • Print num in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the number
int findNum(int div[], int rem[], int N)
{
    int num = rem[N - 1];
  
    for (int i = N - 2; i >= 0; i--) {
        num = num * div[i] + rem[i];
    }
  
    return num;
}
  
// Driver Code
int main()
{
    int div[] = { 8, 3 };
    int rem[] = { 2, 2 };
    int N = sizeof(div) / sizeof(div[0]);
  
    cout << findNum(div, rem, N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
  
public class GFG{
      
    // Function to find the number
    static int findNum(int div[], int rem[], int N)
    {
        int num = rem[N - 1];
      
        for (int i = N - 2; i >= 0; i--) {
            num = num * div[i] + rem[i];
        }
      
        return num;
    }
  
  
     // Driver Code
     public static void main(String []args){
            int div[] = { 8, 3 }; 
            int rem[] = { 2, 2 }; 
            int N = div.length; 
    
            System.out.println(findNum(div, rem, N)); 
  
     }
     // This code is contributed by ANKITRAI1
}

chevron_right


Python3

# Python 3 program to implement
# above approach

# Function to find the number
def findNum(div, rem, N):
num = rem[N – 1]
i = N – 2
while(i >= 0):
num = num * div[i] + rem[i]

i -= 1

return num

# Driver Code
if __name__ == ‘__main__’:
div = [8, 3]
rem = [2, 2]
N = len(div)

print(findNum(div, rem, N))

# This code is contributed by
# Surendra_Gangwar

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the 
// above approach 
using System;
  
class GFG
{
  
// Function to find the number 
static int findNum(int []div,
                   int []rem, int N) 
    int num = rem[N - 1]; 
  
    for (int i = N - 2; i >= 0; i--)
    
        num = num * div[i] + rem[i]; 
    
  
    return num; 
  
  
// Driver Code 
static public void Main ()
{
    int []div = { 8, 3 }; 
    int []rem = { 2, 2 }; 
    int N = div.Length; 
  
    Console.WriteLine(findNum(div, rem, N)); 
  
  
// This code is contributed by ajit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to implement
// above approach
  
// Function to find the number
function findNum($div, $rem, $N)
{
    $num = $rem[$N - 1];
  
    for ($i = $N - 2; $i >= 0; $i--)
    {
        $num = $num * $div[$i] + $rem[$i];
    }
  
    return $num;
}
  
// Driver Code
$div = array( 8, 3 );
$rem = array(2, 2 );
$N = sizeof($div);
  
echo findNum($div, $rem, $N);
  
// This code is contributed by ajit
?>

chevron_right


Output:

18


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.