Skip to content
Related Articles

Related Articles

Improve Article
Find the Nth term of the series 1 + 2 + 6 + 15 + 31 + 56 + …
  • Difficulty Level : Easy
  • Last Updated : 12 Apr, 2021

Given an integer N  . The task is to write a program to find the N-th term of the given series: 
 

1 + 2 + 6 + 15 + 31 + 56 + ... 

Examples
 

Input : N = 8
Output : 141

Input : N = 20
Output : 2471

Approach: 
The given series is: 
 

1, 2, 6, 15, 31, 56, 92, 141, ...

First consecutive difference
 

1 4 9 16 25 36 49 .......

Second consecutive difference
 



3 5 7 9 11 13......

As the second consecutive difference is in AP, the nth term (tn) of the series is of the form,
A(n – 1)(n – 2)(n – 3) + B(n – 1)(n – 2) + C(n – 1) + D
So, tn = A(n – 1)(n – 2)(n – 3) + B(n – 1)(n – 2) + C(n – 1) + D
Now, 
t1 = D = 1
t2 = C (2 – 1) + D = 2 
t3 = 2B + 2C + D = 6
t4 = CA + 6B + 3C + D = 15
On solving the above four equations we get => A = 1/3, B = 3/2, C = 1, D = 1. On substituting these values tn and after simplifying we get,
t_{n} = \frac{2n^{3}-3n^{2}+n+6}{6}
Below is the implementation of above approach: 
 

C++




// C++ program to find Nth
// term of the series:
// 1 + 2 + 6 + 15 + 31 + 56 + ...
#include<iostream>
#include<math.h>
using namespace std;
 
// calculate Nth term of given series
int Nth_Term(int n)
{
    return (2 * pow(n, 3) - 3 *
                pow(n, 2) + n + 6) / 6;
}
 
// Driver code
int main()
{
    int N = 8;
    cout << Nth_Term(N);
}

Java




// Java program to find Nth
// term of the series:
// 1 + 2 + 6 + 15 + 31 + 56 + ...
import java.util.*;
import java.lang.*;
 
class GFG
{
// calculate Nth term of given series
static double Nth_Term(int n)
{
    return (2 * Math.pow(n, 3) - 3 *
                Math.pow(n, 2) + n + 6) / 6;
}
 
// Driver code
static public void main (String args[])
{
    int N = 8;
    System.out.println(Nth_Term(N));
}
}
 
// This code is contributed
// by Akanksha Rai

Python3




# Python program to find Nth term of the series:
# 1 + 2 + 6 + 15 + 31 + 56 + ...
 
# calculate Nth term of given series
def Nth_Term(n):
    return (2 * pow(n, 3) - 3 * pow(n, 2) + n + 6) // 6
 
# Driver code
N = 8
print(Nth_Term(N))

C#




// C# program to find Nth
// term of the series:
// 1 + 2 + 6 + 15 + 31 + 56 + ...
using System;
 
class GFG
{
// calculate Nth term of given series
static double Nth_Term(int n)
{
    return (2 * Math.Pow(n, 3) - 3 *
                Math.Pow(n, 2) + n + 6) / 6;
}
 
// Driver code
static public void Main ()
{
    int N = 8;
    Console.WriteLine(Nth_Term(N));
}
}
 
// This code is contributed
// by Sach_Code

PHP




<?php
// PHP program to find Nth
// term of the series:
// 1 + 2 + 6 + 15 + 31 + 56 + ..
 
// calculate Nth term of given series
function Nth_Term($n)
{
    return (2 * pow($n, 3) - 3 *
                pow($n, 2) + $n + 6) / 6;
}
 
// Driver code
$N = 8;
 
echo Nth_Term($N);
 
// This code is contributed by
// Shashank_Sharma
?>

Javascript




<script>
// js program to find Nth
// term of the series:
// 1 + 2 + 6 + 15 + 31 + 56 + ..
 
// calculate Nth term of given series
function Nth_Term(n)
{
    return (2 * Math.pow(n, 3) - 3 *
                Math.pow(n, 2) + n + 6) / 6;
}
 
// Driver code
let N = 8;
 
document.write(Nth_Term(N));
 
// This code is contributed
// by pulamolu mohan pavan cse
</script>
Output: 
141

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up