Skip to content
Related Articles
Find the nth term of the series 0, 8, 64, 216, 512, . . .
• Last Updated : 06 Apr, 2021

Given an integer N, the task is to find the Nth term of the following series:

0, 8, 64, 216, 512, 1000, 1728, . . .

Examples:

Input: N = 6
Output: 1000
Input: N = 5
Output: 512

Approach:

• Given series 0, 8, 64, 216, 512, 1000, 1728, … can also be written as 0 * (02), 2 * (22), 4 * (42), 6 * (62), 8 * (82), 10 * (102), …
• Observe that 0, 2, 4, 6, 10, … is in AP and the nth term of this series can be found using the formula term = a1 + (n – 1) * d where a1 is the first term, n is the term position and d is the common difference.
• To get the term in the original series, term = term * (term2) i.e. term3.
• Finally print the term.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the nth term of the given series``long` `term(``int` `n)``{``    ``// Common difference``    ``int` `d = 2;` `    ``// First term``    ``int` `a1 = 0;` `    ``// nth term``    ``int` `An = a1 + (n - 1) * d;` `    ``// nth term of the given series``    ``An = ``pow``(An, 3);``    ``return` `An;``}` `// Driver code``int` `main()``{``    ``int` `n = 5;` `    ``cout << term(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;` `public` `class` `GFG {` `    ``// Function to return the nth term of the given series``    ``static` `int` `nthTerm(``int` `n)``    ``{` `        ``// Common difference and first term``        ``int` `d = ``2``, a1 = ``0``;` `        ``// nth term``        ``int` `An = a1 + (n - ``1``) * d;` `        ``// nth term of the given series``        ``return` `(``int``)Math.pow(An, ``3``);``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `n = ``5``;``        ``System.out.println(nthTerm(n));``    ``}``}`

## Python3

 `# Python3 implementation of the approach` `# Function to return the nth term of the given series``def` `term(n):``    ` `    ``# Common difference``    ``d ``=` `2``    ` `    ``# First term``    ``a1 ``=` `0``    ` `    ``# nth term``    ``An ``=` `a1 ``+``(n``-``1``)``*``d``    ` `    ``# nth term of the given series``    ``An ``=` `An``*``*``3``    ``return` `An;` `    ` `# Driver code``n ``=` `5``print``(term(n))`

## C#

 `// C# implementation of the approach``using` `System;``public` `class` `GFG {` `    ``// Function to return the nth term of the given series``    ``static` `int` `nthTerm(``int` `n)``    ``{` `        ``// Common difference and first term``        ``int` `d = 2, a1 = 0;` `        ``// nth term``        ``int` `An = a1 + (n - 1) * d;` `        ``// nth term of the given series``        ``return` `(``int``)Math.Pow(An, 3);``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `n = 5;``        ``Console. WriteLine(nthTerm(n));``    ``}``}``// This code is contributed by Mutual singh.`

## PHP

 ``

## Javascript

 ``
Output:
`512`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up