Skip to content
Related Articles

Related Articles

Improve Article
Find the nth term of the series 0, 8, 64, 216, 512, . . .
  • Last Updated : 06 Apr, 2021

Given an integer N, the task is to find the Nth term of the following series: 
 

0, 8, 64, 216, 512, 1000, 1728, . . . 
 

Examples: 
 

Input: N = 6 
Output: 1000
Input: N = 5 
Output: 512 
 

 



Approach: 
 

  • Given series 0, 8, 64, 216, 512, 1000, 1728, … can also be written as 0 * (02), 2 * (22), 4 * (42), 6 * (62), 8 * (82), 10 * (102), …
  • Observe that 0, 2, 4, 6, 10, … is in AP and the nth term of this series can be found using the formula term = a1 + (n – 1) * d where a1 is the first term, n is the term position and d is the common difference.
  • To get the term in the original series, term = term * (term2) i.e. term3.
  • Finally print the term.

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the nth term of the given series
long term(int n)
{
    // Common difference
    int d = 2;
 
    // First term
    int a1 = 0;
 
    // nth term
    int An = a1 + (n - 1) * d;
 
    // nth term of the given series
    An = pow(An, 3);
    return An;
}
 
// Driver code
int main()
{
    int n = 5;
 
    cout << term(n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
import java.lang.*;
import java.io.*;
 
public class GFG {
 
    // Function to return the nth term of the given series
    static int nthTerm(int n)
    {
 
        // Common difference and first term
        int d = 2, a1 = 0;
 
        // nth term
        int An = a1 + (n - 1) * d;
 
        // nth term of the given series
        return (int)Math.pow(An, 3);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 5;
        System.out.println(nthTerm(n));
    }
}

Python3




# Python3 implementation of the approach
 
# Function to return the nth term of the given series
def term(n):
     
    # Common difference
    d = 2
     
    # First term
    a1 = 0
     
    # nth term
    An = a1 +(n-1)*d
     
    # nth term of the given series
    An = An**3
    return An;
 
     
# Driver code
n = 5
print(term(n))

C#




// C# implementation of the approach
using System;
public class GFG {
 
    // Function to return the nth term of the given series
    static int nthTerm(int n)
    {
 
        // Common difference and first term
        int d = 2, a1 = 0;
 
        // nth term
        int An = a1 + (n - 1) * d;
 
        // nth term of the given series
        return (int)Math.Pow(An, 3);
    }
 
    // Driver code
    public static void Main()
    {
        int n = 5;
        Console. WriteLine(nthTerm(n));
    }
}
// This code is contributed by Mutual singh.

PHP




<?php
// PHP implementation of the approach
 
// Function to return the nth term of the given series
function term($n
 
    // Common difference
    $d = 2;
 
    // First term
    $a1 = 0;
 
    // nth term
    $An=$a1+($n-1)*$d;
 
    // nth term of the given series
    return pow($An, 3);
                      
   
// Driver code 
$n = 5;
echo term($n); 
?>

Javascript




<script>
 
// javascript implementation of the approach
 
// Function to return the nth term of the given series
function term(n) 
 
    // Common difference
    let d = 2;
 
    // First term
    let a1 = 0;
 
    // nth term
    An=a1+(n-1)*d;
 
    // nth term of the given series
    return Math.pow(An, 3);
                      
   
// Driver code 
let n = 5;
document.write( term(n)); 
 
// This code is contributed by sravan kumar
 
</script>
Output: 
512

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :