# Find the nth term of the given series

Given the first two terms of the series as **1** and **6** and all the elements of the series are 2 less than the mean of the number preceding and succeeding it. The task is to print the **n ^{th}** term of the series.

First few terms of the series are:

1, 6, 15, 28, 45, 66, 91, …

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Examples:**

Input:N = 3Output:15Input:N = 1Output:1

**Approach:** The given series represents odd positioned numbers in the triangular number series. Since the **n ^{th}** triangular number can easily be found by

**(n * (n + 1) / 2)**, so for finding the odd numbers we can replace

**n**by

**(2 * n) – 1**as

**(2 * n) – 1**will always result in odd numbers i.e. the

**n**number of the given series will be

^{th}**((2 * n) – 1) * n**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the nth term` `// of the given series` `int` `oddTriangularNumber(` `int` `N)` `{` ` ` `return` `(N * ((2 * N) - 1));` `}` `// Driver code` `int` `main()` `{` ` ` `int` `N = 3;` ` ` `cout << oddTriangularNumber(N);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` `// Function to return the nth term` `// of the given series` `static` `int` `oddTriangularNumber(` `int` `N)` `{` ` ` `return` `(N * ((` `2` `* N) - ` `1` `));` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `N = ` `3` `;` ` ` `System.out.println(oddTriangularNumber(N));` `}` `}` `// This code contributed by Rajput-Ji` |

## Python3

`# Python 3 implementation of the approach` `# Function to return the nth term` `# of the given series` `def` `oddTriangularNumber(N):` ` ` `return` `(N ` `*` `((` `2` `*` `N) ` `-` `1` `))` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `N ` `=` `3` ` ` `print` `(oddTriangularNumber(N))` `# This code is contributed by` `# Surendra_Gangwar` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` `// Function to return the nth term` ` ` `// of the given series` ` ` `static` `int` `oddTriangularNumber(` `int` `N)` ` ` `{` ` ` `return` `(N * ((2 * N) - 1));` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main(String[] args)` ` ` `{` ` ` `int` `N = 3;` ` ` `Console.WriteLine(oddTriangularNumber(N));` ` ` `}` `}` `/* This code contributed by PrinciRaj1992 */` |

## PHP

`<?php` `// PHP implementation of the approach` `// Function to return the nth term` `// of the given series` `function` `oddTriangularNumber(` `$N` `)` `{` ` ` `return` `(` `$N` `* ((2 * ` `$N` `) - 1));` `}` ` ` `// Driver code` ` ` `$N` `= 3;` ` ` `echo` `oddTriangularNumber(` `$N` `);` ` ` ` ` `// This code is contributed by Ryuga` `?>` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the nth term` `// of the given series` `function` `oddTriangularNumber(N)` `{` ` ` `return` `(N * ((2 * N) - 1));` `}` `// Driver code` `let N = 3;` `document.write(oddTriangularNumber(N));` `// This code is contributed by subham348.` `</script>` |

**Output:**

15