Skip to content
Related Articles

Related Articles

Find the Nth row in Pascal’s Triangle
  • Difficulty Level : Medium
  • Last Updated : 22 Apr, 2021

Given a non-negative integer N, the task is to find the Nth row of Pascal’s Triangle

Note: The row index starts from 0. 

Pascal’s Triangle: 

1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1 
 

Examples: 

Input: N = 3 
Output: 1, 3, 3, 1 
Explanation: 
The elements in the 3rd row are 1 3 3 1.



Input: N = 0 
Output:

Naive Approach: 
The simplest approach to solve the problem is to use Recursion. Find the row of the previous index first using recursion and then calculate the values of the current row with the help of the previous one. Repeat this process up to the Nth row.

Below is the implementation of the above approach:  

C++




// C++ program to find the Nth
// index row in Pascal's triangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the elements
// of rowIndex in Pascal's Triangle
vector<int> getRow(int rowIndex)
{
    vector<int> currow;
     
    // 1st element of every row is 1
    currow.push_back(1);
     
    // Check if the row that has to
    // be returned is the first row
    if (rowIndex == 0)
    {
        return currow;
    }
     
    // Generate the previous row
    vector<int> prev = getRow(rowIndex - 1);
 
    for(int i = 1; i < prev.size(); i++)
    {
         
        // Generate the elements
        // of the current row
        // by the help of the
        // previous row
        int curr = prev[i - 1] + prev[i];
        currow.push_back(curr);
    }
    currow.push_back(1);
     
    // Return the row
    return currow;
}
 
// Driver Code   
int main()
{
    int n = 3;
    vector<int> arr = getRow(n);
 
    for(int i = 0; i < arr.size(); i++)
    {
        if (i == arr.size() - 1)
            cout << arr[i];
        else
            cout << arr[i] << ", ";
    }
    return 0;
}
 
// This code is contributed by divyesh072019

Java




// Java Program to find the Nth
// index row in Pascal's triangle
import java.util.ArrayList;
public class geeks {
 
    // Function to find the elements
    // of rowIndex in Pascal's Triangle
    public static ArrayList<Integer> getRow(
        int rowIndex)
    {
        ArrayList<Integer> currow
            = new ArrayList<Integer>();
        // 1st element of every row is 1
        currow.add(1);
 
        // Check if the row that has to
        // be returned is the first row
        if (rowIndex == 0) {
            return currow;
        }
        // Generate the previous row
        ArrayList<Integer> prev = getRow(rowIndex
                                         - 1);
 
        for (int i = 1; i < prev.size(); i++) {
            // Generate the elements
            // of the current row
            // by the help of the
            // previous row
            int curr = prev.get(i - 1)
                       + prev.get(i);
            currow.add(curr);
        }
        currow.add(1);
 
        // Return the row
        return currow;
    }
 
    // Driver Program
    public static void main(String[] args)
    {
        int n = 3;
        ArrayList<Integer> arr = getRow(n);
 
        for (int i = 0; i < arr.size(); i++) {
            if (i == arr.size() - 1)
                System.out.print(arr.get(i));
            else
                System.out.print(arr.get(i)
                                 + ", ");
        }
    }
}

Python3




# Python3 program to find the Nth
# index row in Pascal's triangle
 
# Function to find the elements
# of rowIndex in Pascal's Triangle
def getRow(rowIndex) :
 
    currow = []
     
    # 1st element of every row is 1
    currow.append(1)
     
    # Check if the row that has to
    # be returned is the first row
    if (rowIndex == 0) :
     
        return currow
     
    # Generate the previous row
    prev = getRow(rowIndex - 1)
 
    for i in range(1, len(prev)) :
         
        # Generate the elements
        # of the current row
        # by the help of the
        # previous row
        curr = prev[i - 1] + prev[i]
        currow.append(curr)
 
    currow.append(1)
     
    # Return the row
    return currow
 
n = 3
arr = getRow(n)
 
for i in range(len(arr)) :
 
    if (i == (len(arr) - 1)) :
        print(arr[i])
    else :
        print(arr[i] , end = ", ")
 
# This code is contributed by divyeshrabadiya07

C#




// C# program to find the Nth
// index row in Pascal's triangle
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the elements
// of rowIndex in Pascal's Triangle
public static List<int> getRow(int rowIndex)
{
    List<int> currow = new List<int>();
     
    // 1st element of every row is 1
    currow.Add(1);
 
    // Check if the row that has to
    // be returned is the first row
    if (rowIndex == 0)
    {
        return currow;
    }
    // Generate the previous row
    List<int> prev = getRow(rowIndex - 1);
 
    for(int i = 1; i < prev.Count; i++)
    {
         
        // Generate the elements
        // of the current row
        // by the help of the
        // previous row
        int curr = prev[i - 1] + prev[i];
        currow.Add(curr);
    }
    currow.Add(1);
 
    // Return the row
    return currow;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
    List<int> arr = getRow(n);
 
    for(int i = 0; i < arr.Count; i++)
    {
        if (i == arr.Count - 1)
            Console.Write(arr[i]);
        else
            Console.Write(arr[i] + ", ");
    }
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
    // Javascript program to find the Nth
    // index row in Pascal's triangle
     
    // Function to find the elements
    // of rowIndex in Pascal's Triangle
    function getRow(rowIndex)
    {
        let currow = [];
 
        // 1st element of every row is 1
        currow.push(1);
 
        // Check if the row that has to
        // be returned is the first row
        if (rowIndex == 0)
        {
            return currow;
        }
        // Generate the previous row
        let prev = getRow(rowIndex - 1);
 
        for(let i = 1; i < prev.length; i++)
        {
 
            // Generate the elements
            // of the current row
            // by the help of the
            // previous row
            let curr = prev[i - 1] + prev[i];
            currow.push(curr);
        }
        currow.push(1);
 
        // Return the row
        return currow;
    }
     
    let n = 3;
    let arr = getRow(n);
  
    for(let i = 0; i < arr.length; i++)
    {
        if (i == arr.length - 1)
            document.write(arr[i]);
        else
            document.write(arr[i] + ", ");
    }
 
</script>
Output: 
1, 3, 3, 1

 

Efficient Approach: 
Follow the steps below to optimize the above approach:

  • Unlike the above approach, we will just generate only the numbers of the Nth row.
  • We can observe that the Nth row of the Pascals triangle consists of following sequence:
NC0, NC1, ......, NCN - 1, NCN
  • Since, NC0 = 1, the following values of the sequence can be generated by the following equation:
NCr = (NCr - 1 * (N - r + 1)) / r where 1 ≤ r ≤ N

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Print the N-th row of the
// Pascal's Triangle
void generateNthrow(int N)
{
    // nC0 = 1
    int prev = 1;
    cout << prev;
 
    for (int i = 1; i <= N; i++) {
        // nCr = (nCr-1 * (n - r + 1))/r
        int curr = (prev * (N - i + 1)) / i;
        cout << ", " << curr;
        prev = curr;
    }
}
 
// Driver Program
int main()
{
 
    int N = 5;
    generateNthrow(N);
    return 0;
}

Java




// Java program to implement the above approach
import java.io.*;
 
class GFG{
 
// Print the N-th row of the
// Pascal's Triangle
static void generateNthrow(int N)
{
 
    // nC0 = 1
    int prev = 1;
    System.out.print(prev);
     
    for(int i = 1; i <= N; i++)
    {
         
       // nCr = (nCr-1 * (n - r + 1))/r
       int curr = (prev * (N - i + 1)) / i;
       System.out.print(", " + curr);
       prev = curr;
    }
}
     
// Driver code
public static void main (String[] args)
{
    int N = 5;
    generateNthrow(N);
}
}
 
// This code is contributed by shubhamsingh10

Python3




# Python3 program to implement the above approach
 
# Print the N-th row of the
# Pascal's Triangle
def generateNthRow (N):
 
    # nC0 = 1
    prev = 1
    print(prev, end = '')
 
    for i in range(1, N + 1):
 
        # nCr = (nCr-1 * (n - r + 1))/r
        curr = (prev * (N - i + 1)) // i
        print(",", curr, end = '')
        prev = curr
 
# Driver code
N = 5
 
# Function calling
generateNthRow(N)
 
# This code is contributed by himanshu77

C#




// C# program to implement the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Print the N-th row of the
// Pascal's Triangle
static void generateNthrow(int N)
{
 
    // nC0 = 1
    int prev = 1;
    Console.Write(prev);
     
    for(int i = 1; i <= N; i++)
    {
         
        // nCr = (nCr-1 * (n - r + 1))/r
        int curr = (prev * (N - i + 1)) / i;
        Console.Write(", " + curr);
        prev = curr;
    }
}
     
// Driver code
public static void Main(String[] args)
{
    int N = 5;
    generateNthrow(N);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
    // Javascript program to implement the above approach
     
    // Print the N-th row of the
    // Pascal's Triangle
    function generateNthrow(N)
    {
 
        // nC0 = 1
        let prev = 1;
        document.write(prev);
 
        for(let i = 1; i <= N; i++)
        {
 
            // nCr = (nCr-1 * (n - r + 1))/r
            let curr = (prev * (N - i + 1)) / i;
            document.write(", " + curr);
            prev = curr;
        }
    }
     
    let N = 5;
    generateNthrow(N);
 
// This code is contributed by suresh07.
</script>
Output: 
1, 5, 10, 10, 5, 1

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up
Recommended Articles
Page :