Given a number **A** in decimal base, the task is to find the **N ^{th}** digit from last in base

**B**

**Examples:**

Input:A = 100, N = 3, B = 4

Output:2

Explanation:

(100)_{4}= 1210

3^{rd}digit from last is 2

Input:A = 50, N = 3, B = 5

Output:2

Explanation:

(50)_{5}= 200

3^{rd}digit from last is 2

**Approach:** The idea is to skip (N-1) digits of the given number in base B by dividing the number with B, (N – 1) times and then return the modulo of the current number by the B to get the N^{th} digit from the right.

Below is the implementation of the above approach:

## C++

`// C++ Implementation to find Nth digit ` `// from right in base B ` ` ` `#include <iostream> ` `using` `namespace` `std; ` ` ` `// Function to compute Nth digit ` `// from right in base B ` `int` `nthDigit(` `int` `a, ` `int` `n, ` `int` `b) ` `{ ` ` ` ` ` `// Skip N-1 Digits in Base B ` ` ` `for` `(` `int` `i = 1; i < n; i++) ` ` ` `a = a / b; ` ` ` ` ` `// Nth Digit from right in Base B ` ` ` `return` `a % b; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` `int` `a = 100; ` ` ` `int` `n = 3; ` ` ` `int` `b = 4; ` ` ` `cout << nthDigit(a, n, b); ` ` ` `return` `0; ` `} ` |

## Java

`// Java Implementation to find Nth digit ` `// from right in base B ` `import` `java.util.*; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to compute Nth digit ` `// from right in base B ` `static` `int` `nthDigit(` `int` `a, ` `int` `n, ` `int` `b) ` `{ ` ` ` ` ` `// Skip N-1 Digits in Base B ` ` ` `for` `(` `int` `i = ` `1` `; i < n; i++) ` ` ` `a = a / b; ` ` ` ` ` `// Nth Digit from right in Base B ` ` ` `return` `a % b; ` `} ` ` ` `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` ` ` `int` `a = ` `100` `; ` ` ` `int` `n = ` `3` `; ` ` ` `int` `b = ` `4` `; ` ` ` `System.out.print(nthDigit(a, n, b)); ` `} ` `} ` ` ` `// This code is contributed by PrinciRaj1992 ` |

## Python3

`# Ptyhon3 Implementation to find Nth digit ` `# from right in base B ` ` ` `# Function to compute Nth digit ` `# from right in base B ` `def` `nthDigit(a, n, b): ` ` ` ` ` `# Skip N-1 Digits in Base B ` ` ` `for` `i ` `in` `range` `(` `1` `, n): ` ` ` `a ` `=` `a ` `/` `/` `b ` ` ` ` ` `# Nth Digit from right in Base B ` ` ` `return` `a ` `%` `b ` ` ` `# Driver Code ` `a ` `=` `100` `n ` `=` `3` `b ` `=` `4` `print` `(nthDigit(a, n, b)) ` ` ` `# This code is contributed by ApurvaRaj ` |

## C#

`// C# Implementation to find Nth digit ` `// from right in base B ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` ` ` `// Function to compute Nth digit ` ` ` `// from right in base B ` ` ` `static` `int` `nthDigit(` `int` `a, ` `int` `n, ` `int` `b) ` ` ` `{ ` ` ` ` ` `// Skip N-1 Digits in Base B ` ` ` `for` `(` `int` `i = 1; i < n; i++) ` ` ` `a = a / b; ` ` ` ` ` `// Nth Digit from right in Base B ` ` ` `return` `a % b; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `int` `a = 100; ` ` ` `int` `n = 3; ` ` ` `int` `b = 4; ` ` ` `Console.Write(nthDigit(a, n, b)); ` ` ` `} ` `} ` ` ` `// This code is contributed by AnkitRai01 ` |

**Output:**

2

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.