Given a tree, and the weights of all the nodes and an integer **x**, the task is to find a node **i** such that **weight[i] + x** gives the minimum setbits, If two or more nodes have the same count of set bits when added with **x** then find the one with the minimum value.**Examples:**

Input:

x = 15

Output:1

Node 1: setbits(5 + 15) = 2

Node 2: setbits(10 + 15) = 3

Node 3: setbits(11 + 15) = 3

Node 4: setbits(8 + 15) = 4

Node 5: setbits(6 + 15) = 3

**Approach:** Perform dfs on the tree and keep track of the node whose sum with **x** has minimum set bits. If two or more nodes have an equal count of set bits then choose the one with the minimum number.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `minimum = INT_MAX, x, ans = INT_MAX;` `vector<` `int` `> graph[100];` `vector<` `int` `> weight(100);` `// Function to perform dfs to find` `// the minimum set bits value` `void` `dfs(` `int` `node, ` `int` `parent)` `{` ` ` `// If current set bits value is smaller than` ` ` `// the current minimum` ` ` `int` `a = __builtin_popcount(weight[node] + x);` ` ` `if` `(minimum > a) {` ` ` `minimum = a;` ` ` `ans = node;` ` ` `}` ` ` `// If count is equal to the minimum` ` ` `// then choose the node with minimum value` ` ` `else` `if` `(minimum == a)` ` ` `ans = min(ans, node);` ` ` `for` `(` `int` `to : graph[node]) {` ` ` `if` `(to == parent)` ` ` `continue` `;` ` ` `dfs(to, node);` ` ` `}` `}` `// Driver code` `int` `main()` `{` ` ` `x = 15;` ` ` `// Weights of the node` ` ` `weight[1] = 5;` ` ` `weight[2] = 10;` ` ` `weight[3] = 11;` ` ` `weight[4] = 8;` ` ` `weight[5] = 6;` ` ` `// Edges of the tree` ` ` `graph[1].push_back(2);` ` ` `graph[2].push_back(3);` ` ` `graph[2].push_back(4);` ` ` `graph[1].push_back(5);` ` ` `dfs(1, 1);` ` ` `cout << ans;` ` ` `return` `0;` `}` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach` `import` `java.util.*;` `class` `GFG{` `static` `int` `minimum = Integer.MAX_VALUE, ` ` ` `x, ans = Integer.MAX_VALUE;` `static` `Vector<Integer> []graph = ` ` ` `new` `Vector[` `100` `];` `static` `int` `[]weight = ` `new` `int` `[` `100` `];` `// Function to perform dfs ` `// to find the minimum set ` `// bits value` `static` `void` `dfs(` `int` `node, ` ` ` `int` `parent)` `{` ` ` `// If current set bits value ` ` ` `// is smaller than the current ` ` ` `// minimum` ` ` `int` `a = Integer.bitCount(weight[node] + x);` ` ` `if` `(minimum > a) ` ` ` `{` ` ` `minimum = a;` ` ` `ans = node;` ` ` `}` ` ` `// If count is equal to the ` ` ` `// minimum then choose the ` ` ` `// node with minimum value` ` ` `else` `if` `(minimum == a)` ` ` `ans = Math.min(ans, node);` ` ` `for` `(` `int` `to : graph[node]) ` ` ` `{` ` ` `if` `(to == parent)` ` ` `continue` `;` ` ` `dfs(to, node);` ` ` `}` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `x = ` `15` `;` ` ` `for` `(` `int` `i = ` `0` `; i < graph.length; i++)` ` ` `graph[i] = ` `new` `Vector<Integer>();` ` ` ` ` `// Weights of the node` ` ` `weight[` `1` `] = ` `5` `;` ` ` `weight[` `2` `] = ` `10` `;` ` ` `weight[` `3` `] = ` `11` `;` ` ` `weight[` `4` `] = ` `8` `;` ` ` `weight[` `5` `] = ` `6` `;` ` ` `// Edges of the tree` ` ` `graph[` `1` `].add(` `2` `);` ` ` `graph[` `2` `].add(` `3` `);` ` ` `graph[` `2` `].add(` `4` `);` ` ` `graph[` `1` `].add(` `5` `);` ` ` `dfs(` `1` `, ` `1` `);` ` ` `System.out.print(ans);` `}` `}` `// This code is contributed by gauravrajput1` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach` `from` `sys ` `import` `maxsize` `minimum, x, ans ` `=` `maxsize, ` `None` `, maxsize` `graph ` `=` `[[] ` `for` `i ` `in` `range` `(` `100` `)]` `weight ` `=` `[` `0` `] ` `*` `100` `# Function to perform dfs to find` `# the minimum set bits value` `def` `dfs(node, parent):` ` ` `global` `x, ans, graph, weight, minimum` ` ` `# If current set bits value is greater than` ` ` `# the current minimum` ` ` `a ` `=` `bin` `(weight[node] ` `+` `x).count(` `'1'` `)` ` ` `if` `minimum > a:` ` ` `minimum ` `=` `a` ` ` `ans ` `=` `node` ` ` `# If count is equal to the minimum` ` ` `# then choose the node with minimum value` ` ` `elif` `minimum ` `=` `=` `a:` ` ` `ans ` `=` `min` `(ans, node)` ` ` `for` `to ` `in` `graph[node]:` ` ` `if` `to ` `=` `=` `parent:` ` ` `continue` ` ` `dfs(to, node)` `# Driver Code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `x ` `=` `15` ` ` `# Weights of the node` ` ` `weight[` `1` `] ` `=` `5` ` ` `weight[` `2` `] ` `=` `10` ` ` `weight[` `3` `] ` `=` `11` ` ` `weight[` `4` `] ` `=` `8` ` ` `weight[` `5` `] ` `=` `6` ` ` `# Edges of the tree` ` ` `graph[` `1` `].append(` `2` `)` ` ` `graph[` `2` `].append(` `3` `)` ` ` `graph[` `2` `].append(` `4` `)` ` ` `graph[` `1` `].append(` `5` `)` ` ` `dfs(` `1` `, ` `1` `)` ` ` `print` `(ans)` `# This code is contributed by` `# sanjeev2552` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of the approach ` `using` `System; ` `using` `System.Collections; ` `using` `System.Collections.Generic; ` `using` `System.Text; ` `class` `GFG{` ` ` `static` `int` `minimum = ` `int` `.MaxValue, x, ` ` ` `ans = ` `int` `.MaxValue;` `static` `ArrayList[] graph = ` `new` `ArrayList[100]; ` `static` `int` `[] weight = ` `new` `int` `[100]; ` `static` `int` `PopCount(` `int` `n) ` `{ ` ` ` `int` `count = 0;` ` ` ` ` `while` `(n > 0)` ` ` `{ ` ` ` `count += n & 1; ` ` ` `n >>= 1; ` ` ` `} ` ` ` `return` `count; ` `} ` `// Function to perform dfs to find` `// the minimum set bits value` `static` `void` `dfs(` `int` `node, ` `int` `parent)` `{` ` ` ` ` `// If current set bits value is smaller ` ` ` `// than the current minimum` ` ` `int` `a = PopCount(weight[node] + x);` ` ` `if` `(minimum > a) ` ` ` `{` ` ` `minimum = a;` ` ` `ans = node;` ` ` `}` ` ` `// If count is equal to the minimum` ` ` `// then choose the node with minimum value` ` ` `else` `if` `(minimum == a)` ` ` `ans = Math.Min(ans, node);` ` ` `foreach` `(` `int` `to ` `in` `graph[node])` ` ` `{` ` ` `if` `(to == parent)` ` ` `continue` `;` ` ` ` ` `dfs(to, node);` ` ` `}` `}` ` ` `// Driver Code` `public` `static` `void` `Main(` `string` `[] args)` `{` ` ` `x = 15;` ` ` ` ` `for` `(` `int` `i = 0; i < 100; i++) ` ` ` `graph[i] = ` `new` `ArrayList();` ` ` ` ` `// Weights of the node` ` ` `weight[1] = 5;` ` ` `weight[2] = 10;` ` ` `weight[3] = 11;` ` ` `weight[4] = 8;` ` ` `weight[5] = 6;` ` ` `// Edges of the tree` ` ` `graph[1].Add(2);` ` ` `graph[2].Add(3);` ` ` `graph[2].Add(4);` ` ` `graph[1].Add(5);` ` ` `dfs(1, 1);` ` ` `Console.Write(ans); ` `}` `}` `// This code is contributed by rutvik_56` |

*chevron_right*

*filter_none*

**Output:**

1

**Complexity Analysis:**

**Time Complexity:**O(N).

In dfs, every node of the tree is processed once, and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Also, for processing each node the builtin_popcount() function is used which has a complexity of O(c) where c is a constant, and since this complexity is constant, it doesn’t affect the overall time complexity. Therefore, the time complexity is O(N).**Auxiliary Space:**O(1).

Any extra space is not required, so the space complexity is constant.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.