Find the node whose sum with X has maximum set bits

Given a tree, and the weights of all the nodes and an integer x, the task is to find a node i such that weight[i] + x has the maximum set bits. If two or more nodes have the same count of set bits when added with x then find the one with the minimum value.

Examples:

Input:

x = 15
Output: 4
Node 1: setbits(5 + 15) = 2
Node 2: setbits(10 + 15) = 3
Node 3: setbits(11 + 15) = 3
Node 4: setbits(8 + 15) = 4
Node 5: setbits(6 + 15) = 3

Approach: Perform dfs on the tree and keep track of the node whose sum with x has maximum set bits. If two or more nodes have equal count of set bits then choose the one with the minimum number.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
int maximum = INT_MIN, x, ans = INT_MAX;
  
vector<int> graph[100];
vector<int> weight(100);
  
// Function to perform dfs to find
// the maximum set bits value
void dfs(int node, int parent)
{
    // If current set bits value is greater than
    // the current maximum
    int a = __builtin_popcount(weight[node] + x);
    if (maximum < a) {
        maximum = a;
        ans = node;
    }
  
    // If count is equal to the maximum
    // then choose the node with minimum value
    else if (maximum == a)
        ans = min(ans, node);
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
  
// Driver code
int main()
{
    x = 15;
  
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
  
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
  
    dfs(1, 1);
  
    cout << ans;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG
{
  
static int maximum = Integer.MIN_VALUE, x, ans = Integer.MAX_VALUE; 
  
static Vector<Vector<Integer>> graph = new Vector<Vector<Integer>>(); 
static Vector<Integer> weight = new Vector<Integer>(); 
  
//number of set bits
static int __builtin_popcount(int x)
{
    int c = 0;
    for(int i = 0; i < 60; i++)
    if(((x>>i)&1) != 0)c++;
      
    return c;
}
  
// Function to perform dfs to find 
// the maximum value 
static void dfs(int node, int parent) 
    // If current set bits value is greater than
    // the current maximum
    int a = __builtin_popcount(weight.get(node) + x);
    if (maximum < a) 
    {
        maximum = a;
        ans = node;
    }
  
    // If count is equal to the maximum
    // then choose the node with minimum value
    else if (maximum == a)
        ans = Math.min(ans, node);
          
    for (int i = 0; i < graph.get(node).size(); i++) 
    
        if (graph.get(node).get(i) == parent) 
            continue
        dfs(graph.get(node).get(i), node); 
    
  
// Driver code 
public static void main(String args[])
    x = 15
  
    // Weights of the node 
    weight.add(0); 
    weight.add(5); 
    weight.add(10);; 
    weight.add(11);; 
    weight.add(8); 
    weight.add(6); 
      
    for(int i = 0; i < 100; i++)
    graph.add(new Vector<Integer>());
  
    // Edges of the tree 
    graph.get(1).add(2); 
    graph.get(2).add(3); 
    graph.get(2).add(4); 
    graph.get(1).add(5); 
  
    dfs(1, 1); 
  
    System.out.println( ans); 
}
  
// This code is contributed by Arnab Kundu

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
using System.Collections.Generic;
  
class GFG
{
  
static int maximum = int.MinValue, x,ans = int.MaxValue; 
  
static List<List<int>> graph = new List<List<int>>();
static List<int> weight = new List<int>();
  
// number of set bits
static int __builtin_popcount(int x)
{
    int c = 0;
    for(int i = 0; i < 60; i++)
    if(((x>>i)&1) != 0)c++;
      
    return c;
}
  
// Function to perform dfs to find 
// the maximum value 
static void dfs(int node, int parent) 
    // If current set bits value is greater than
    // the current maximum
    int a = __builtin_popcount(weight[node] + x);
    if (maximum < a) 
    {
        maximum = a;
        ans = node;
    }
  
    // If count is equal to the maximum
    // then choose the node with minimum value
    else if (maximum == a)
        ans = Math.Min(ans, node);
          
    for (int i = 0; i < graph[node].Count; i++) 
    
        if (graph[node][i] == parent) 
            continue
        dfs(graph[node][i], node); 
    
  
// Driver code 
public static void Main()
    x = 15; 
  
    // Weights of the node 
    weight.Add(0); 
    weight.Add(5); 
    weight.Add(10);
    weight.Add(11);; 
    weight.Add(8); 
    weight.Add(6); 
      
    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());
  
    // Edges of the tree 
    graph[1].Add(2); 
    graph[2].Add(3); 
    graph[2].Add(4); 
    graph[1].Add(5); 
  
    dfs(1, 1); 
  
    Console.Write( ans); 
}
  
// This code is contributed by mits

chevron_right


Output:

4


My Personal Notes arrow_drop_up

Data science |Machine learning|Programming

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : andrew1234, Mithun Kumar