Find the Next perfect square greater than a given number

Given a number N, the task is to find the next perfect square greater than N.

Examples:

Input: N = 6
Output: 9
9 is a greater number than 6 and
is also a perfect square

Input: N = 9
Output: 16

Approach:

  1. Find the square root of given N.
  2. Calculate its floor value using floor function in C++.
  3. Then add 1 to it.
  4. Print square of that number.

Below is the implementation of above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <iostream>
#include<cmath>
using namespace std;
  
// Function to find the next perfect square
int nextPerfectSquare(int N)
{
    int nextN = floor(sqrt(N)) + 1;
  
    return nextN * nextN;
}
  
// Driver Code
int main()
{
    int n = 35;
  
    cout << nextPerfectSquare(n);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
import java.util.*;
import java.lang.*;
import java.io.*;
  
class GFG
{
      
// Function to find the
// next perfect square
static int nextPerfectSquare(int N)
{
    int nextN = (int)Math.floor(Math.sqrt(N)) + 1;
  
    return nextN * nextN;
}
  
// Driver Code
public static void main(String args[])
{
    int n = 35;
  
    System.out.println (nextPerfectSquare(n));
}
}
  
// This code is contributed by Subhadeep
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
  
import math
#Function to find the next perfect square
  
def nextPerfectSquare(N):
  
    nextN = math.floor(math.sqrt(N)) + 1
  
    return nextN * nextN
  
if __name__=='__main__':
    N = 35
    print(nextPerfectSquare(N))
  
# this code is contributed by Surendra_Gangwar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
      
// Function to find the
// next perfect square
static int nextPerfectSquare(int N)
{
    int nextN = (int)Math.Floor(Math.Sqrt(N)) + 1;
  
    return nextN * nextN;
}
  
// Driver Code
public static void Main()
{
    int n = 35;
  
    Console.WriteLine(nextPerfectSquare(n));
}
}
  
// This code is contributed 
// by Shashank
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation 
// of above approach
  
// Function to find the
// next perfect square
function nextPerfectSquare($N)
{
    $nextN = floor(sqrt($N)) + 1;
  
    return $nextN * $nextN;
}
  
// Driver Code
$n = 35;
  
echo nextPerfectSquare($n);
  
// This code is contributed by mits
?>
chevron_right

Output:
36

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Article Tags :
Practice Tags :