Given a number N, the task is to find the next perfect square greater than N.
Examples:
Input: N = 6 Output: 9 9 is a greater number than 6 and is also a perfect square Input: N = 9 Output: 16
Approach:
- Find the square root of given N.
- Calculate its floor value using floor function in C++.
- Then add 1 to it.
- Print square of that number.
Below is the implementation of above approach:
C++
// C++ implementation of above approach #include <iostream> #include<cmath> using namespace std;
// Function to find the next perfect square int nextPerfectSquare( int N)
{ int nextN = floor ( sqrt (N)) + 1;
return nextN * nextN;
} // Driver Code int main()
{ int n = 35;
cout << nextPerfectSquare(n);
return 0;
} |
chevron_right
filter_none
Java
// Java implementation of above approach import java.util.*;
import java.lang.*;
import java.io.*;
class GFG
{ // Function to find the // next perfect square static int nextPerfectSquare( int N)
{ int nextN = ( int )Math.floor(Math.sqrt(N)) + 1 ;
return nextN * nextN;
} // Driver Code public static void main(String args[])
{ int n = 35 ;
System.out.println (nextPerfectSquare(n));
} } // This code is contributed by Subhadeep |
chevron_right
filter_none
Python3
# Python3 implementation of above approach import math
#Function to find the next perfect square def nextPerfectSquare(N):
nextN = math.floor(math.sqrt(N)) + 1
return nextN * nextN
if __name__ = = '__main__' :
N = 35
print (nextPerfectSquare(N))
# this code is contributed by Surendra_Gangwar |
chevron_right
filter_none
C#
// C# implementation of above approach using System;
class GFG
{ // Function to find the // next perfect square static int nextPerfectSquare( int N)
{ int nextN = ( int )Math.Floor(Math.Sqrt(N)) + 1;
return nextN * nextN;
} // Driver Code public static void Main()
{ int n = 35;
Console.WriteLine(nextPerfectSquare(n));
} } // This code is contributed // by Shashank |
chevron_right
filter_none
PHP
<?php // PHP implementation // of above approach // Function to find the // next perfect square function nextPerfectSquare( $N )
{ $nextN = floor (sqrt( $N )) + 1;
return $nextN * $nextN ;
} // Driver Code $n = 35;
echo nextPerfectSquare( $n );
// This code is contributed by mits ?> |
chevron_right
filter_none
Output:
36
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.
Practice Tags :