Skip to content
Related Articles

Related Articles

Improve Article
Find the most valued alphabet in the String
  • Last Updated : 18 May, 2021

Given a string str, the task is to find the maximum valued alphabet in str. The value of a particular alphabet is defined as the difference in the indices of its last and the first occurrence. If there are multiple such alphabets then find the lexicographically smallest alphabet.
Examples: 
 

Input: str = “abbba” 
Output:
value(‘a’) = 4 – 0 = 4 
value(‘b’) = 3 – 1 = 2
Input: str = “bbb” 
Output:
 

 

Approach: The idea is to store the first and the last occurrences of each of the alphabets in two auxiliary arrays say first[] and last[]. Now, these two arrays can be used to find the maximum valued alphabet in the given string.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 26;
 
// Function to return the maximum
// valued alphabet
char maxAlpha(string str, int len)
{
 
    // To store the first and the last
    // occurrence of all the characters
    int first[MAX], last[MAX];
 
    // Set the first and the last occurrence
    // of all the characters to -1
    for (int i = 0; i < MAX; i++) {
        first[i] = -1;
        last[i] = -1;
    }
 
    // Update the occurrences of the characters
    for (int i = 0; i < len; i++) {
 
        int index = (str[i] - 'a');
 
        // Only set the first occurrence if
        // it hasn't already been set
        if (first[index] == -1)
            first[index] = i;
 
        last[index] = i;
    }
 
    // To store the result
    int ans = -1, maxVal = -1;
 
    // For every alphabet
    for (int i = 0; i < MAX; i++) {
 
        // If current alphabet doesn't appear
        // in the given string
        if (first[i] == -1)
            continue;
 
        // If the current character has
        // the highest value so far
        if ((last[i] - first[i]) > maxVal) {
            maxVal = last[i] - first[i];
            ans = i;
        }
    }
 
    return (char)(ans + 'a');
}
 
// Driver code
int main()
{
    string str = "abbba";
    int len = str.length();
 
    cout << maxAlpha(str, len);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
static int MAX = 26;
 
// Function to return the maximum
// valued alphabet
static char maxAlpha(String str, int len)
{
 
    // To store the first and the last
    // occurrence of all the characters
    int []first = new int[MAX];
    int []last = new int[MAX];
 
    // Set the first and the last occurrence
    // of all the characters to -1
    for (int i = 0; i < MAX; i++)
    {
        first[i] = -1;
        last[i] = -1;
    }
 
    // Update the occurrences of the characters
    for (int i = 0; i < len; i++)
    {
 
        int index = (str.charAt(i) - 'a');
 
        // Only set the first occurrence if
        // it hasn't already been set
        if (first[index] == -1)
            first[index] = i;
 
        last[index] = i;
    }
 
    // To store the result
    int ans = -1, maxVal = -1;
 
    // For every alphabet
    for (int i = 0; i < MAX; i++)
    {
 
        // If current alphabet doesn't appear
        // in the given String
        if (first[i] == -1)
            continue;
 
        // If the current character has
        // the highest value so far
        if ((last[i] - first[i]) > maxVal)
        {
            maxVal = last[i] - first[i];
            ans = i;
        }
    }
    return (char)(ans + 'a');
}
 
// Driver code
public static void main(String[] args)
{
    String str = "abbba";
    int len = str.length();
 
    System.out.print(maxAlpha(str, len));
}
}
 
// This code is contributed by 29AjayKumar

Python




# Python implementation of the approach
MAX = 26
 
# Function to return the maximum
# valued alphabet
def maxAlpha(str, len):
 
    # To store the first and the last
    # occurrence of all the characters
 
    # Set the first and the last occurrence
    # of all the characters to -1
     
    first = [-1 for x in range(MAX)]
    last = [-1 for x in range(MAX)]
     
    # Update the occurrences of the characters
    for i in range(0,len):
 
        index = ord(str[i])-97
 
        # Only set the first occurrence if
        # it hasn't already been set
        if (first[index] == -1):
            first[index] = i
 
        last[index] = i
     
    # To store the result
    ans = -1
    maxVal = -1
 
    # For every alphabet
    for i in range(0,MAX):
 
        # If current alphabet doesn't appear
        # in the given string
        if (first[i] == -1):
            continue
 
        # If the current character has
        # the highest value so far
        if ((last[i] - first[i]) > maxVal):
            maxVal = last[i] - first[i];
            ans = i
 
    return chr(ans + 97)
 
# Driver code
str = "abbba"
len = len(str)
 
print(maxAlpha(str, len))
 
# This code is contributed by Sanjit_Prasad

C#




// C# implementation of the approach
using System;
 
class GFG
{
static int MAX = 26;
 
// Function to return the maximum
// valued alphabet
static char maxAlpha(String str, int len)
{
 
    // To store the first and the last
    // occurrence of all the characters
    int []first = new int[MAX];
    int []last = new int[MAX];
 
    // Set the first and the last occurrence
    // of all the characters to -1
    for (int i = 0; i < MAX; i++)
    {
        first[i] = -1;
        last[i] = -1;
    }
 
    // Update the occurrences of the characters
    for (int i = 0; i < len; i++)
    {
 
        int index = (str[i] - 'a');
 
        // Only set the first occurrence if
        // it hasn't already been set
        if (first[index] == -1)
            first[index] = i;
 
        last[index] = i;
    }
 
    // To store the result
    int ans = -1, maxVal = -1;
 
    // For every alphabet
    for (int i = 0; i < MAX; i++)
    {
 
        // If current alphabet doesn't appear
        // in the given String
        if (first[i] == -1)
            continue;
 
        // If the current character has
        // the highest value so far
        if ((last[i] - first[i]) > maxVal)
        {
            maxVal = last[i] - first[i];
            ans = i;
        }
    }
    return (char)(ans + 'a');
}
 
// Driver code
public static void Main(String[] args)
{
    String str = "abbba";
    int len = str.Length;
 
    Console.Write(maxAlpha(str, len));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
      // JavaScript implementation of the approach
      const MAX = 26;
 
      // Function to return the maximum
      // valued alphabet
      function maxAlpha(str, len)
      {
        // To store the first and the last
        // occurrence of all the characters
        var first = new Array(MAX);
        var last = new Array(MAX);
 
        // Set the first and the last occurrence
        // of all the characters to -1
        for (var i = 0; i < MAX; i++) {
          first[i] = -1;
          last[i] = -1;
        }
 
        // Update the occurrences of the characters
        for (var i = 0; i < len; i++) {
          var index = str[i].charCodeAt(0) -
          "a".charCodeAt(0);
 
          // Only set the first occurrence if
          // it hasn't already been set
          if (first[index] === -1) first[index] = i;
 
          last[index] = i;
        }
 
        // To store the result
        var ans = -1,
          maxVal = -1;
 
        // For every alphabet
        for (var i = 0; i < MAX; i++) {
          // If current alphabet doesn't appear
          // in the given String
          if (first[i] === -1) continue;
 
          // If the current character has
          // the highest value so far
          if (last[i] - first[i] > maxVal) {
            maxVal = last[i] - first[i];
            ans = i;
          }
        }
        return String.fromCharCode(ans + "a".charCodeAt(0));
      }
 
      // Driver code
      var str = "abbba";
      var len = str.length;
 
      document.write(maxAlpha(str, len));
       
</script>
Output: 



a

 

Time Complexity: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :