Given a list of n-1 integers and these integers are in the range of 1 to n. There are no duplicates in list. One of the integers is missing in the list. Write an efficient code to find the missing integer.
Examples:
Input : arr[] = [1, 2, 3, 4, 6, 7, 8]
Output : 5
Input : arr[] = [1, 2, 3, 4, 5, 6, 8, 9]
Output : 7
Naive approach: One Simple solution is to apply methods discussed for finding the missing element in an unsorted array.
Algorithm
- Create an empty hash table.
- Traverse through the given list of n-1 integers and insert each integer into the hash table.
- Traverse through the range of 1 to n and check whether each integer is present in the hash table or not.
- If any integer is not present in the hash table, then it is the missing integer.
Implementation
C++
#include <iostream>
#include <unordered_set>
using namespace std;
int findMissingNumber( int arr[], int n) {
unordered_set< int > hashSet;
for ( int i = 0; i < n-1; i++) {
hashSet.insert(arr[i]);
}
for ( int i = 1; i <= n; i++) {
if (hashSet.find(i) == hashSet.end()) {
return i;
}
}
return n+1;
}
int main() {
int arr[] = {1, 2, 4, 6, 3, 7, 8};
int n = sizeof (arr) / sizeof (arr[0]);
int missingNumber = findMissingNumber(arr, n);
cout << "Missing number is: " << missingNumber << endl;
return 0;
}
|
Java
import java.util.HashSet;
public class Main {
public static int findMissingNumber( int [] arr, int n) {
HashSet<Integer> hashSet = new HashSet<Integer>();
for ( int i = 0 ; i < n- 1 ; i++) {
hashSet.add(arr[i]);
}
for ( int i = 1 ; i <= n; i++) {
if (!hashSet.contains(i)) {
return i;
}
}
return n+ 1 ;
}
public static void main(String[] args) {
int [] arr = { 1 , 2 , 4 , 6 , 3 , 7 , 8 };
int n = arr.length;
int missingNumber = findMissingNumber(arr, n);
System.out.println( "Missing number is: " + missingNumber);
}
}
|
C#
using System;
using System.Collections.Generic;
class Program
{
static int FindMissingNumber( int [] arr, int n)
{
HashSet< int > hashSet = new HashSet< int >();
for ( int i = 0; i < n - 1; i++)
{
hashSet.Add(arr[i]);
}
for ( int i = 1; i <= n; i++)
{
if (!hashSet.Contains(i))
{
return i;
}
}
return n + 1;
}
static void Main( string [] args)
{
int [] arr = { 1, 2, 4, 6, 3, 7, 8 };
int n = arr.Length;
int missingNumber = FindMissingNumber(arr, n);
Console.WriteLine( "Missing number is: " + missingNumber);
}
}
|
Python
def find_missing_number(arr):
n = len (arr) + 1
hash_set = set (arr)
for i in range ( 1 , n):
if i not in hash_set:
return i
return n
arr = [ 1 , 2 , 4 , 6 , 3 , 7 , 8 ]
missing_number = find_missing_number(arr)
print ( "Missing number is:" , missing_number)
|
Javascript
function findMissingNumber(arr, n) {
let hashSet = new Set();
for (let i = 0; i < n - 1; i++) {
hashSet.add(arr[i]);
}
for (let i = 1; i <= n; i++) {
if (!hashSet.has(i)) {
return i;
}
}
return n + 1;
}
let arr = [1, 2, 4, 6, 3, 7, 8];
let n = arr.length;
let missingNumber = findMissingNumber(arr, n);
console.log( "Missing number is: " + missingNumber);
|
OutputMissing number is: 5
Time Complexity: O(n), where n is the length of given array
Auxiliary Space: O(n)
Efficient approach: It is based on the divide and conquer algorithm that we have seen in binary search, the concept behind this solution is that the elements appearing before the missing element will have ar[i] – i = 1 and those appearing after the missing element will have ar[i] – i = 2.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
int search( int ar[], int size)
{
if (ar[0] != 1)
return 1;
if (ar[size - 1] != (size + 1))
return size + 1;
int a = 0, b = size - 1;
int mid;
while ((b - a) > 1) {
mid = (a + b) / 2;
if ((ar[a] - a) != (ar[mid] - mid))
b = mid;
else if ((ar[b] - b) != (ar[mid] - mid))
a = mid;
}
return (ar[a] + 1);
}
int main()
{
int ar[] = { 1, 2, 3, 4, 5, 6, 8 };
int size = sizeof (ar) / sizeof (ar[0]);
cout << "Missing number:" << search(ar, size);
}
|
Java
import java.io.*;
class GFG {
static int search( int ar[], int size)
{
if (ar[ 0 ] != 1 )
return 1 ;
if (ar[size - 1 ] != (size + 1 ))
return size + 1 ;
int a = 0 , b = size - 1 ;
int mid = 0 ;
while ((b - a) > 1 ) {
mid = (a + b) / 2 ;
if ((ar[a] - a) != (ar[mid] - mid))
b = mid;
else if ((ar[b] - b) != (ar[mid] - mid))
a = mid;
}
return (ar[a] + 1 );
}
public static void main(String[] args)
{
int ar[] = { 1 , 2 , 3 , 4 , 5 , 6 , 8 };
int size = ar.length;
System.out.println( "Missing number: "
+ search(ar, size));
}
}
|
Python3
def search(ar, size):
if (ar[ 0 ] ! = 1 ):
return 1
if (ar[size - 1 ] ! = (size + 1 )):
return size + 1
a = 0
b = size - 1
mid = 0
while b > a + 1 :
mid = (a + b) / / 2
if (ar[a] - a) ! = (ar[mid] - mid):
b = mid
elif (ar[b] - b) ! = (ar[mid] - mid):
a = mid
return ar[a] + 1
a = [ 1 , 2 , 3 , 4 , 5 , 6 , 8 ]
n = len (a)
print ( "Missing number:" , search(a, n))
|
C#
using System;
class GFG {
static int search( int [] ar, int size)
{
if (ar[0] != 1)
return 1;
if (ar[size - 1] != (size + 1))
return size + 1;
int a = 0, b = size - 1;
int mid = 0;
while ((b - a) > 1) {
mid = (a + b) / 2;
if ((ar[a] - a) != (ar[mid] - mid))
b = mid;
else if ((ar[b] - b) != (ar[mid] - mid))
a = mid;
}
return (ar[a] + 1);
}
static public void Main(String[] args)
{
int [] ar = { 1, 2, 3, 4, 5, 6, 8 };
int size = ar.Length;
Console.WriteLine( "Missing number: "
+ search(ar, size));
}
}
|
PHP
<?php
function search( $ar , $size )
{
if ( $ar [0]!=1)
return 1;
if ( $ar [ $size -1]!=( $size +1))
return $size +1;
$a = 0;
$b = $size - 1;
$mid ;
while (( $b - $a ) > 1)
{
$mid = (int)(( $a + $b ) / 2);
if (( $ar [ $a ] - $a ) != ( $ar [ $mid ] -
$mid ))
$b = $mid ;
else if (( $ar [ $b ] - $b ) != ( $ar [ $mid ] -
$mid ))
$a = $mid ;
}
return ( $ar [ $a ] + 1);
}
$ar = array (1, 2, 3, 4, 5, 6, 8 );
$size = sizeof( $ar );
echo "Missing number: " ,
search( $ar , $size );
?>
|
Javascript
<script>
function findMissing(arr) {
var size = arr.length;
if (ar[0]!=1)
return 1;
if (ar[size-1]!=(size+1))
return size+1;
var low = 0;
var high = arr.length;
while (low <= high) {
var mid = Math.floor((low+high)/2);
if ((arr[mid]-mid === 1) && (arr[mid+1]-(mid+1) === 2)) return arr[mid]+1;
if (arr[mid]-mid === 1) {
low = mid+1;
} else {
high = mid-1;
}
}
return -1;
}
let ar = [1, 2, 3, 4, 5, 6, 8];
document.write( "Missing number: " +findMissing(ar));
</script>
|
Time Complexity: O(log(N)), where N is the length of given array
Auxiliary Space: O(1)
Please Login to comment...