Skip to content
Related Articles

Related Articles

Find the minimum range size that contains the given element for Q queries

Improve Article
Save Article
  • Last Updated : 22 Apr, 2022
Improve Article
Save Article

Given an array Intervals[] consisting of N pairs of integers where each pair is denoting the value range [L, R]. Also, given an integer array Q[] consisting of M queries. For each query, the task is to find the size of the smallest range that contains that element. Return -1 if no valid interval exists.

Examples

Input: Intervals[] = [[1, 4], [2, 3], [3, 6], [9, 25], [7, 15], [4, 4]]
           Q[] = [7, 50, 2]
Output: [9, -1, 2]
Explanation: Element 7 is in the range [7, 15] only therefore, the answer will be 15 – 7 + 1 = 9. Element 50 is in no range. Therefore, the answer will be -1.
Similarly, element 2 is in the range [2, 3] and [1, 4] but the smallest range is [2, 3] therefore, the answer will be 3-2+1 = 2.

Input: Intervals[] = [[1, 4], [2, 4], [3, 6]]
           Q[] = [2, 3]
Output: [3, 3]
 

Naive Approach: The simplest approach to solve the problem is to Iterate through the array range[] and for each query find the smallest range that contains the given elements.

Time Complexity: O(N×M)
Auxiliary Space: O(M)

Efficient Approach: The approach mentioned above can be optimized further by using priority_queue. Follow the steps below to solve the problem:

  • Initialize a vector of vectors, say Queries and insert all the queries in the array Q along with its index.
  • Sort the vector Intervals and Queries using the default sorting function of the vector.
  • Initialize a priority_queue, say pq with key as the size of Interval and value as right bound of the range.
  • Initialize a vector, say result that will store the size of minimum range for each query.
  • Initialize an integer variable, say i that will keep the track of traversed elements of the array Intervals.
  • Iterate in the range [0, M-1] using the variable j and perform the following steps:
    • Iterate while i < Intervals.size() and Intervals[i][0] <= Queries[j][0], insert -(Intervals[i][1] – Intervals[i][0] + 1), Intervals[i][1] as pair and increment the value of i by 1.
    • Now remove all the elements from the priority_queue pq with the right element less than Queries[j][0].
    • If the size of priority_queue pq>0, then modify the value of result[Queries[j][1]] as pq.top()[0].
  • Return the array res[] as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the size of minimum
// Interval that contains the given element
vector<int> minInterval(vector<vector<int> >& intervals,
                        vector<int>& q)
{
    // Store all the queries
    // along with their index
    vector<vector<int> > queries;
 
    for (int i = 0; i < q.size(); i++)
        queries.push_back({ q[i], i });
 
    // Sort the vector intervals and queries
    sort(intervals.begin(), intervals.end());
    sort(queries.begin(), queries.end());
 
    // Max priority queue to keep track
    // of intervals size and right value
    priority_queue<vector<int> > pq;
 
    // Stores the result of all the queries
    vector<int> result(queries.size(), -1);
 
    // Current position of intervals
    int i = 0;
 
    for (int j = 0; j < queries.size(); j++) {
 
        // Stores the current query
        int temp = queries[j][0];
 
        // Insert all the intervals whose left value
        // is less than or equal to the current query
        while (i < intervals.size()
               && intervals[i][0] <= temp) {
 
            // Insert the negative of range size and
            // the right bound of the interval
            pq.push(
                { -intervals[i][1] + intervals[i][0] - 1,
                  intervals[i++][1] });
        }
 
        // Pop all the intervals with right value
        // less than the current query
        while (!pq.empty() && temp > pq.top()[1]) {
            pq.pop();
        }
 
        // Check if the valid interval exists
        // Update the answer for current query
        // in result array
        if (!pq.empty())
            result[queries[j][1]] = -pq.top()[0];
    }
    // Return the result array
    return result;
}
 
// Driver Code
int main()
{
    // Given Input
    vector<vector<int> > intervals
        = { { 1, 4 }, { 2, 3 }, { 3, 6 }, { 9, 25 }, { 7, 15 }, { 4, 4 } };
    vector<int> Q = { 7, 50, 2, 3, 4, 9 };
 
    // Function Call
    vector<int> result = minInterval(intervals, Q);
 
    // Print the result for each query
    for (int i = 0; i < result.size(); i++)
        cout << result[i] << " ";
    return 0;
}

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the size of minimum
// Interval that contains the given element
function minInterval(intervals, q)
{
    // Store all the queries
    // along with their index
    var queries = [];
 
    for (var i = 0; i < q.length; i++)
        queries.push([q[i], i]);
 
    // Sort the vector intervals and queries
    intervals.sort((a,b)=> {
            if(a[0] == b[0])
                return a[1] - b[1];
            return a[0] - b[0];
        });
    queries.sort((a,b)=> {
            if(a[0] == b[0])
                return a[1]-b[1];
            return a[0]-b[0];
        });
 
    // Max priority queue to keep track
    // of intervals size and right value
    var pq = [];
 
    // Stores the result of all the queries
    var result = Array(queries.length).fill(-1);
 
    // Current position of intervals
    var i = 0;
 
    for (var j = 0; j < queries.length; j++) {
 
        // Stores the current query
        var temp = queries[j][0];
 
        // Insert all the intervals whose left value
        // is less than or equal to the current query
        while (i < intervals.length
               && intervals[i][0] <= temp) {
 
            // Insert the negative of range size and
            // the right bound of the interval
            pq.push(
                [ -intervals[i][1] + intervals[i][0] - 1,
                  intervals[i++][1] ]);
        }
        pq.sort((a,b)=> {
            if(a[0] == b[0])
                return a[1]-b[1];
            return a[0]-b[0];
        });
         
        // Pop all the intervals with right value
        // less than the current query
        while (pq.length != 0 && temp > pq[pq.length-1][1]) {
            pq.pop();
        }
 
        // Check if the valid interval exists
        // Update the answer for current query
        // in result array
        if (pq.length!=0)
            result[queries[j][1]] = -pq[pq.length-1][0];
    }
    // Return the result array
    return result;
}
 
// Driver Code
// Given Input
var intervals
    = [ [ 1, 4 ], [ 2, 3 ], [ 3, 6 ], [ 9, 25 ], [ 7, 15 ], [ 4, 4 ] ];
var Q = [ 7, 50, 2, 3, 4, 9 ];
 
// Function Call
var result = minInterval(intervals, Q);
 
// Print the result for each query
for (var i = 0; i < result.length; i++)
    document.write(result[i] + " ");
 
// This code is contributed by rrrtnx.
</script>

Output

9 -1 2 2 1 9 

Time Complexity: O(NlogN+MlogM)
Auxiliary Space: O(N+M)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!