Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find the minimum positive integer such that it is divisible by A and sum of its digits is equal to B

  • Last Updated : 10 Aug, 2021

Given two integers A and B, the task is to find the minimum positive integer N such that N is divisible by A and the sum of the digits of N is equal to B. If number is not found then print -1.
Examples: 
 

Input: A = 20, B = 30 
Output: 49980 
49980 is divisible by 20 and sum of its digit = 4 + 9 + 9 + 8 + 0 = 30
Input: A = 5, B = 2 
Output: 20 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach: 
 

  • Create empty queue q that stores the value of A and B and output number as a string and create integer type 2-D array visited[][] that stores the visited digit.
  • Insert Node into queue and check if queue is non-empty.
  • While the queue is non-empty, pop an element from the queue and for every digit from 1 to 9, concatenate the digit after the string num and check whether the number formed is the required number.
  • If the required number is found, print the number.
  • Else repeat the steps while the number is less than B and the queue is non-empty while pushing the non-visited number to the queue.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Array that stores visited digits
int visited[501][5001];
 
// Structure for queue Node.
struct Node {
    int a, b;
    string str;
};
 
// Function to return the minimum number such that it is
// divisible by 'a' and sum of its digits is equals to 'b'
int findNumber(int a, int b)
{
    // Create queue
    queue<Node> q;
 
    // Initially queue is empty
    Node temp = Node{ 0, 0, "" };
 
    // Initialize visited to 1
    visited[0][0] = 1;
 
    // Push temp in queue
    q.push(temp);
 
    // While queue is not empty
    while (!q.empty()) {
 
        // Get the front of the queue and pop it
        Node u = q.front();
        q.pop();
 
        // If popped element is the required number
        if (u.a == 0 && u.b == b)
 
            // Parse int from string and return it
            return std::stoi(u.str);
 
        // Loop for each digit and check the sum
        // If not visited then push it to the queue
        for (int i = 0; i < 10; i++) {
            int dd = (u.a * 10 + i) % a;
            int ss = u.b + i;
            if (ss <= b && !visited[dd][ss]) {
                visited[dd][ss] = 1;
                q.push(Node{ dd, ss, u.str + char('0' + i) });
            }
        }
    }
 
    // Required number not found return -1.
    return -1;
}
 
// Driver code.
int main()
{
    int a = 25, b = 1;
    cout << findNumber(a, b);
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
class Solution
{
  
// Array that stores visited digits
static int visited[][]= new int[501][5001];
  
// Structure for queue Node.
static class Node {
    int a, b;
    String str;
    Node(int a1,int b1,String s)
    {
        a=a1;
        b=b1;
        str=s;
    }
}
  
// Function to return the minimum number such that it is
// divisible by 'a' and sum of its digits is equals to 'b'
static int findNumber(int a, int b)
{
    // Create queue
    Queue<Node> q= new LinkedList<Node>();
  
    // Initially queue is empty
    Node temp =new  Node( 0, 0, "" );
  
    // Initialize visited to 1
    visited[0][0] = 1;
  
    // Push temp in queue
    q.add(temp);
  
    // While queue is not empty
    while (q.size()!=0) {
  
        // Get the front of the queue and pop it
        Node u = q.peek();
        q.remove();
  
        // If popped element is the required number
        if (u.a == 0 && u.b == b)
  
            // Parse int from string and return it
            return Integer.parseInt(u.str);
  
        // Loop for each digit and check the sum
        // If not visited then push it to the queue
        for (int i = 0; i < 10; i++) {
            int dd = (u.a * 10 + i) % a;
            int ss = u.b + i;
            if (ss <= b && visited[dd][ss]==0) {
                visited[dd][ss] = 1;
                q.add(new Node( dd, ss, u.str + (char)('0' + i) ));
            }
        }
    }
  
    // Required number not found return -1.
    return -1;
}
  
// Driver code.
public static void  main(String args[])
{
    //initialize visited
    for(int i=0;i<500;i++)
        for(int j=0;j<500;j++)
            visited[i][j]=0;
     
    int a = 25, b = 1;
    System.out.println(findNumber(a, b));
     
}
}
//contributed by Arnab Kundu

Python3




# Python3 implementation of the approach
 
# Array that stores visited digits
visited = [[0 for x in range(501)]
              for y in range(5001)]
 
# Structure for queue Node.
class Node:
     
    def __init__(self, a, b, string):
        self.a = a
        self.b = b
        self.string = string
 
# Function to return the minimum number
# such that it is divisible by 'a' and
# sum of its digits is equals to 'b'
def findNumber(a, b):
 
    # Use list as queue
    q = []
 
    # Initially queue is empty
    temp = Node(0, 0, "")
 
    # Initialize visited to 1
    visited[0][0] = 1
 
    # Push temp in queue
    q.append(temp)
 
    # While queue is not empty
    while len(q) > 0:
 
        # Get the front of the queue
        # and pop it
        u = q.pop(0)
 
        # If popped element is the
        # required number
        if u.a == 0 and u.b == b:
 
            # Parse int from string
            # and return it
            return int(u.string)
 
        # Loop for each digit and check the sum
        # If not visited then push it to the queue
        for i in range(0, 10):
            dd = (u.a * 10 + i) % a
            ss = u.b + i
             
            if ss <= b and visited[dd][ss] == False:
                visited[dd][ss] = 1
                q.append(Node(dd, ss, u.string + str(i)))
 
    # Required number not found return -1.
    return -1
 
# Driver code.
if __name__ == "__main__":
 
    a, b = 25, 1
    print(findNumber(a, b))
     
# This code is contributed by Rituraj Jain

Javascript




<script>
// Javascript implementation of the approach
 
// Array that stores visited digits
let visited=new Array(501);
for(let i = 0; i < 501; i++)
{
    visited[i] = new Array(5001);
    for(let j = 0; j < 5001; j++)
        visited[i][j] = 0;
}
 
// Structure for queue Node.
class Node
{
    constructor(a1, b1, s)
    {
        this.a = a1;
        this.b = b1;
        this.str = s;
    }
}
 
// Function to return the minimum number such that it is
// divisible by 'a' and sum of its digits is equals to 'b'
function findNumber(a,b)
{
    // Create queue
    let q= [];
   
    // Initially queue is empty
    let temp = new  Node( 0, 0, "" );
   
    // Initialize visited to 1
    visited[0][0] = 1;
   
    // Push temp in queue
    q.push(temp);
   
    // While queue is not empty
    while (q.length != 0) {
   
        // Get the front of the queue and pop it
        let u = q[0];
        q.shift();
   
        // If popped element is the required number
        if (u.a == 0 && u.b == b)
   
            // Parse int from string and return it
            return parseInt(u.str);
   
        // Loop for each digit and check the sum
        // If not visited then push it to the queue
        for (let i = 0; i < 10; i++) {
            let dd = (u.a * 10 + i) % a;
            let ss = u.b + i;
            if (ss <= b && visited[dd][ss] == 0) {
                visited[dd][ss] = 1;
                q.push(new Node( dd, ss, u.str + String.fromCharCode('0'.charCodeAt(0) + i) ));
            }
        }
    }
   
    // Required number not found return -1.
    return -1;
}
 
// Driver code.
let a = 25, b = 1;
document.write(findNumber(a, b));
 
// This code is contributed by avanitrachhadiya2155
</script>
Output: 
100

 

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :