Related Articles

# Find the node with minimum value in a Binary Search Tree

• Difficulty Level : Basic
• Last Updated : 05 Jul, 2021

This is quite simple. Just traverse the node from root to left recursively until left is NULL. The node whose left is NULL is the node with minimum value. For the above tree, we start with 20, then we move left 8, we keep on moving to left until we see NULL. Since left of 4 is NULL, 4 is the node with minimum value.

## C++

 `//C++ program to find minimum value node in binary search Tree.``#include ``using` `namespace` `std;` `/* A binary tree node has data, pointer to left child``and a pointer to right child */``struct` `node``{``    ``int` `data;``    ``struct` `node* left;``    ``struct` `node* right;``};` `/* Helper function that allocates a new node``with the given data and NULL left and right``pointers. */``struct` `node* newNode(``int` `data)``{``struct` `node* node = (``struct` `node*)``                    ``malloc``(``sizeof``(``struct` `node));``node->data = data;``node->left = NULL;``node->right = NULL;` `return``(node);``}` `/* Give a binary search tree and a number,``inserts a new node with the given number in``the correct place in the tree. Returns the new``root pointer which the caller should then use``(the standard trick to avoid using reference``parameters). */``struct` `node* insert(``struct` `node* node, ``int` `data)``{``/* 1. If the tree is empty, return a new,``    ``single node */``if` `(node == NULL)``    ``return``(newNode(data));``else``{``    ``/* 2. Otherwise, recur down the tree */``    ``if` `(data <= node->data)``        ``node->left = insert(node->left, data);``    ``else``        ``node->right = insert(node->right, data);` `    ``/* return the (unchanged) node pointer */``    ``return` `node;``}``}` `/* Given a non-empty binary search tree,``return the minimum data value found in that``tree. Note that the entire tree does not need``to be searched. */``int` `minValue(``struct` `node* node)``{``struct` `node* current = node;` `/* loop down to find the leftmost leaf */``while` `(current->left != NULL)``{``    ``current = current->left;``}``return``(current->data);``}` `/* Driver Code*/``int` `main()``{``struct` `node* root = NULL;``root = insert(root, 4);``insert(root, 2);``insert(root, 1);``insert(root, 3);``insert(root, 6);``insert(root, 5);` `cout << ``"\n Minimum value in BST is "` `<< minValue(root);``getchar``();``return` `0;``}` `// This code is contributed by Mukul Singh.`

## C

 `#include ``#include` `/* A binary tree node has data, pointer to left child``   ``and a pointer to right child */``struct` `node``{``    ``int` `data;``    ``struct` `node* left;``    ``struct` `node* right;``};` `/* Helper function that allocates a new node``with the given data and NULL left and right``pointers. */``struct` `node* newNode(``int` `data)``{``  ``struct` `node* node = (``struct` `node*)``                       ``malloc``(``sizeof``(``struct` `node));``  ``node->data  = data;``  ``node->left  = NULL;``  ``node->right = NULL;``  ` `  ``return``(node);``}` `/* Give a binary search tree and a number,``inserts a new node with the given number in``the correct place in the tree. Returns the new``root pointer which the caller should then use``(the standard trick to avoid using reference``parameters). */``struct` `node* insert(``struct` `node* node, ``int` `data)``{``  ``/* 1. If the tree is empty, return a new,    ``      ``single node */``  ``if` `(node == NULL)``    ``return``(newNode(data)); ``  ``else``  ``{``    ``/* 2. Otherwise, recur down the tree */``    ``if` `(data <= node->data)``        ``node->left  = insert(node->left, data);``    ``else``        ``node->right = insert(node->right, data);``  ` `    ``/* return the (unchanged) node pointer */``    ``return` `node;``  ``}``}` `/* Given a non-empty binary search tree, ``return the minimum data value found in that``tree. Note that the entire tree does not need``to be searched. */``int` `minValue(``struct` `node* node) {``  ``struct` `node* current = node;` `  ``/* loop down to find the leftmost leaf */``  ``while` `(current->left != NULL) {``    ``current = current->left;``  ``}``  ``return``(current->data);``}` `/* Driver program to test sameTree function*/`   `int` `main()``{``  ``struct` `node* root = NULL;``  ``root = insert(root, 4);``  ``insert(root, 2);``  ``insert(root, 1);``  ``insert(root, 3);``  ``insert(root, 6);``  ``insert(root, 5); ` `  ``printf``(``"\n Minimum value in BST is %d"``, minValue(root));``  ``getchar``();``  ``return` `0;   ``}`

## Java

 `// Java program to find minimum value node in Binary Search Tree` `// A binary tree node``class` `Node {` `    ``int` `data;``    ``Node left, right;` `    ``Node(``int` `d) {``        ``data = d;``        ``left = right = ``null``;``    ``}``}` `class` `BinaryTree {` `    ``static` `Node head;``    ` `    ``/* Given a binary search tree and a number,``     ``inserts a new node with the given number in``     ``the correct place in the tree. Returns the new``     ``root pointer which the caller should then use``     ``(the standard trick to avoid using reference``     ``parameters). */``    ``Node insert(Node node, ``int` `data) {``        ` `        ``/* 1. If the tree is empty, return a new,    ``         ``single node */``        ``if` `(node == ``null``) {``            ``return` `(``new` `Node(data));``        ``} ``else` `{``            ` `            ``/* 2. Otherwise, recur down the tree */``            ``if` `(data <= node.data) {``                ``node.left = insert(node.left, data);``            ``} ``else` `{``                ``node.right = insert(node.right, data);``            ``}` `            ``/* return the (unchanged) node pointer */``            ``return` `node;``        ``}``    ``}` `    ``/* Given a non-empty binary search tree, ``     ``return the minimum data value found in that``     ``tree. Note that the entire tree does not need``     ``to be searched. */``    ``int` `minvalue(Node node) {``        ``Node current = node;` `        ``/* loop down to find the leftmost leaf */``        ``while` `(current.left != ``null``) {``            ``current = current.left;``        ``}``        ``return` `(current.data);``    ``}``    ` `    ``// Driver program to test above functions``    ``public` `static` `void` `main(String[] args) {``        ``BinaryTree tree = ``new` `BinaryTree();``        ``Node root = ``null``;``        ``root = tree.insert(root, ``4``);``        ``tree.insert(root, ``2``);``        ``tree.insert(root, ``1``);``        ``tree.insert(root, ``3``);``        ``tree.insert(root, ``6``);``        ``tree.insert(root, ``5``);` `        ``System.out.println(``"Minimum value of BST is "` `+ tree.minvalue(root));``    ``}``}` `// This code is contributed by Mayank Jaiswal`

## Python

 `# Python program to find the node with minimum value in bst` `# A binary tree node``class` `Node:` `    ``# Constructor to create a new node``    ``def` `__init__(``self``, key):``        ``self``.data ``=` `key``        ``self``.left ``=` `None``        ``self``.right ``=` `None` `""" Give a binary search tree and a number,``inserts a new node with the given number in``the correct place in the tree. Returns the new``root pointer which the caller should then use``(the standard trick to avoid using reference``parameters). """``def` `insert(node, data):` `    ``# 1. If the tree is empty, return a new,``    ``# single node``    ``if` `node ``is` `None``:``        ``return` `(Node(data))` `    ``else``:``        ``# 2. Otherwise, recur down the tree``        ``if` `data <``=` `node.data:``            ``node.left ``=` `insert(node.left, data)``        ``else``:``            ``node.right ``=` `insert(node.right, data)` `        ``# Return the (unchanged) node pointer``        ``return` `node` `""" Given a non-empty binary search tree, ``return the minimum data value found in that``tree. Note that the entire tree does not need``to be searched. """``def` `minValue(node):``    ``current ``=` `node` `    ``# loop down to find the lefmost leaf``    ``while``(current.left ``is` `not` `None``):``        ``current ``=` `current.left` `    ``return` `current.data` `# Driver program``root ``=` `None``root ``=` `insert(root,``4``)``insert(root,``2``)``insert(root,``1``)``insert(root,``3``)``insert(root,``6``)``insert(root,``5``)` `print` `"\nMinimum value in BST is %d"`  `%``(minValue(root))` `# This code is contributed by Nikhil Kumar Singh(nickzuck_007)`

## C#

 `using` `System;` `// C# program to find minimum value node in Binary Search Tree` `// A binary tree node``public` `class` `Node``{` `    ``public` `int` `data;``    ``public` `Node left, right;` `    ``public` `Node(``int` `d)``    ``{``        ``data = d;``        ``left = right = ``null``;``    ``}``}` `public` `class` `BinaryTree``{` `    ``public` `static` `Node head;` `    ``/* Given a binary search tree and a number, ``     ``inserts a new node with the given number in ``     ``the correct place in the tree. Returns the new ``     ``root pointer which the caller should then use ``     ``(the standard trick to avoid using reference ``     ``parameters). */``    ``public` `virtual` `Node insert(Node node, ``int` `data)``    ``{` `        ``/* 1. If the tree is empty, return a new,     ``         ``single node */``        ``if` `(node == ``null``)``        ``{``            ``return` `(``new` `Node(data));``        ``}``        ``else``        ``{` `            ``/* 2. Otherwise, recur down the tree */``            ``if` `(data <= node.data)``            ``{``                ``node.left = insert(node.left, data);``            ``}``            ``else``            ``{``                ``node.right = insert(node.right, data);``            ``}` `            ``/* return the (unchanged) node pointer */``            ``return` `node;``        ``}``    ``}` `    ``/* Given a non-empty binary search tree,  ``     ``return the minimum data value found in that ``     ``tree. Note that the entire tree does not need ``     ``to be searched. */``    ``public` `virtual` `int` `minvalue(Node node)``    ``{``        ``Node current = node;` `        ``/* loop down to find the leftmost leaf */``        ``while` `(current.left != ``null``)``        ``{``            ``current = current.left;``        ``}``        ``return` `(current.data);``    ``}` `    ``// Driver program to test above functions``    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``BinaryTree tree = ``new` `BinaryTree();``        ``Node root = ``null``;``        ``root = tree.insert(root, 4);``        ``tree.insert(root, 2);``        ``tree.insert(root, 1);``        ``tree.insert(root, 3);``        ``tree.insert(root, 6);``        ``tree.insert(root, 5);` `        ``Console.WriteLine(``"Minimum value of BST is "` `+ tree.minvalue(root));``    ``}``}` `  ``// This code is contributed by Shrikant13`

## PHP

 `node = ``\$node``;``        ``\$left` `= ``\$right` `= NULL;``    ``}` `    ``// set the left node in tree``    ``function` `set_left(``\$left``)``    ``{``        ``\$this``->left = ``\$left``;``    ``}` `    ``// set the right node in tree``    ``function` `set_right(``\$right``)``    ``{``        ``\$this``->right = ``\$right``;``    ``}` `    ``// get left node``    ``function` `get_left()``    ``{``        ``return` `\$this``->left;``    ``}` `    ``// get right node``    ``function` `get_right()``    ``{``        ``return` `\$this``->right;``    ``}` `    ``// get value of current node``    ``function` `get_node()``    ``{``        ``return` `\$this``->node;``    ``}``    ` `}` `// Find the node with minimum value``// in a Binary Search Tree``function` `get_minimum_value(``\$node``)``{``    ``/*travel till last left node to``      ``get the minimum value*/``    ``while` `(``\$node``->get_left() != NULL)``    ``{``        ``\$node` `= ``\$node``->get_left();``    ``}``    ``return` `\$node``->get_node();``}` `// code to creating a tree``\$node` `= ``new` `node(4);``\$lnode` `= ``new` `node(2);``\$lnode``->set_left(``new` `node(1));``\$lnode``->set_right(``new` `node(3));``\$rnode` `= ``new` `node(6);``\$rnode``->set_left(``new` `node(5));``\$node``->set_left(``\$lnode``);``\$node``->set_right(``\$rnode``);` `\$minimum_value` `= get_minimum_value(``\$node``);``echo` `'Minimum value of BST is '``.``                 ``\$minimum_value``;` `// This code is contributed``// by Deepika Pathak``?>`

## Javascript

 ``

Output:

`Minimum value in BST is 1`

Time Complexity: O(n) Worst case happens for left skewed trees.
Similarly we can get the maximum value by recursively traversing the right node of a binary search tree.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up