Skip to content
Related Articles

Related Articles

Find the maximum sum (a+b) for a given input integer N satisfying the given condition
  • Last Updated : 27 Apr, 2021

Given an integer N, the task is to find the largest sum (a + b) {1 ≤ a ≤ N, 1 ≤ b ≤ N} such that a * b/(a + b) is an integer (i.e a + b divides a * b) and a != b. 

Examples:  

Input: N = 10 
Output:
Explanation: The numbers a = 3 and b = 6 leads to sum = 9 also 6 * 3 = 18 which is divisible by 6 + 3 = 9
 

Input: N = 20 
Output: 27 

Naive Approach: The idea to solve this problem with the naive approach is to use the concept of nested loops. The following steps can be followed to compute the result: 
 



  1. Run a nested loop from 1 to N.
  2. For every number a in the range [1, N], find another integer b such that a != b and (a + b) divides a * b.
  3. If the condition is satisfied, the value of (a + b) is stored in a variable to keep the track of the maximum value obtained.
  4. Finally, the maximum value of (a + b) is returned.

Below is the implementation of the above approach:
 

C++




// C++ implementation to find the largest value
// of a + b satisfying the given condition
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum sum of
// a + b satisfying the given condition
int getLargestSum(int N)
{
    // Initialize max_sum
    int max_sum = 0;
 
    // Consider all the possible pairs
    for (int i = 1; i <= N; i++) {
        for (int j = i + 1; j <= N; j++) {
 
            // Check if the product is
            // divisible by the sum
            if (i * j % (i + j) == 0)
 
                // Storing the maximum sum
                // in the max_sum variable
                max_sum = max(max_sum, i + j);
        }
    }
 
    // Return the max_sum value
    return max_sum;
}
 
// Driver code
int main()
{
    int N = 25;
 
    int max_sum = getLargestSum(N);
 
    cout << max_sum << endl;
    return 0;
}

Java




// Java implementation to find the largest value
// of a + b satisfying the given condition
import java.util.*;
  
class GFG{
   
// Function to return the maximum sum of
// a + b satisfying the given condition
static int getLargestSum(int N)
{
    // Initialize max_sum
    int max_sum = 0;
 
    // Consider all the possible pairs
    for (int i = 1; i <= N; i++) {
        for (int j = i + 1; j <= N; j++) {
 
            // Check if the product is
            // divisible by the sum
            if (i * j % (i + j) == 0)
 
                // Storing the maximum sum
                // in the max_sum variable
                max_sum = Math.max(max_sum, i + j);
        }
    }
 
    // Return the max_sum value
    return max_sum;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 25;
 
    int max_sum = getLargestSum(N);
 
    System.out.print(max_sum );
}
}
 
// This code is contributed by shivanisinghss2110

Python3




# Python3 implementation to find the largest value
# of a + b satisfying the given condition
 
# Function to return the maximum sum of
# a + b satisfying the given condition
def getLargestSum(N):
    # Initialize max_sum
    max_sum = 0
 
    # Consider all the possible pairs
    for i in range(1,N+1):
        for j in range(i + 1, N + 1, 1):
 
            # Check if the product is
            # divisible by the sum
            if (i * j % (i + j) == 0):
 
                # Storing the maximum sum
                # in the max_sum variable
                max_sum = max(max_sum, i + j)
 
    # Return the max_sum value
    return max_sum
 
# Driver code
if __name__ == '__main__':
    N = 25
 
    max_sum = getLargestSum(N)
    print(max_sum)
 
# This code is contributed by Surendra_Gangwar

C#




// C# implementation to find the largest value
// of a + b satisfying the given condition
using System;
 
class GFG{
     
    // Function to return the maximum sum of
    // a + b satisfying the given condition
    static int getLargestSum(int N)
    {
        // Initialize max_sum
        int max_sum = 0;
     
        // Consider all the possible pairs
        for (int i = 1; i <= N; i++) {
            for (int j = i + 1; j <= N; j++) {
     
                // Check if the product is
                // divisible by the sum
                if (i * j % (i + j) == 0)
     
                    // Storing the maximum sum
                    // in the max_sum variable
                    max_sum = Math.Max(max_sum, i + j);
            }
        }
     
        // Return the max_sum value
        return max_sum;
    }
     
    // Driver code
    public static void Main(string[] args)
    {
        int N = 25;
     
        int max_sum = getLargestSum(N);
     
        Console.WriteLine(max_sum );
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
// javascript implementation to find the largest value
// of a + b satisfying the given condition
 
    // Function to return the maximum sum of
    // a + b satisfying the given condition
    function getLargestSum(N) {
        // Initialize max_sum
        var max_sum = 0;
 
        // Consider all the possible pairs
        for (i = 1; i <= N; i++) {
            for (j = i + 1; j <= N; j++) {
 
                // Check if the product is
                // divisible by the sum
                if (i * j % (i + j) == 0)
 
                    // Storing the maximum sum
                    // in the max_sum variable
                    max_sum = Math.max(max_sum, i + j);
            }
        }
 
        // Return the max_sum value
        return max_sum;
    }
 
    // Driver code
     
        var N = 25;
 
        var max_sum = getLargestSum(N);
 
        document.write(max_sum);
 
// This code contributed by aashish1995
</script>
Output: 
36

 

Time Complexity: Since the nested for loop runs (N * (N + 1)) / 2 times, the time complexity of the above solution is O(N2).
Efficient Approach: One observation that can be made is that if two numbers a and b exist such that their product is divisible by their sum then they are not relatively prime, i.e, their GCD is not one. This can be proved using Euclidean Algorithm.
Therefore, by using the above observation, the following steps can be followed to compute the result: 
 

1. If a can be expressed as k * x and b can be expressed as k * y such that x and y are coprimes, then: 
 

a + b = k(x + y)
a * b = k2

2. Now, upon dividing the above values: 
 

(a * b) /(a + b) = k * ((x * y)/(x + y)). 

3. Since it is known that x and y are coprime, (x * y) will not be divisible by (x + y). This means k must be divisible by x + y.

4. Therefore, k is the largest factor possible for which (k * x) and (k * y) remain less than N.

5. Clearly, the minimum value of k for which it is divisible by (x + y) is (x + y). This means that (x + y) * y &leq; N and (x + y) * x &leq; N.

6. Therefore, all the factors are checked from 1 to N0.5.

Below is the implementation of the above approach: 
 

C++




// C++ implementation to  find the largest value
// of a + b satisfying the given condition
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum sum of
// a + b satisfying the given condition
int getLargestSum(int N)
{
    int max_sum = 0; // Initialize max_sum
 
    // Consider all possible pairs and check
    // the sum divides product property
    for (int i = 1; i * i <= N; i++) {
        for (int j = i + 1; j * j <= N; j++) {
 
            // To find the largest factor k
            int k = N / j;
            int a = k * i;
            int b = k * j;
 
            // Check if the product is
            // divisible by the sum
            if (a <= N && b <= N
                && a * b % (a + b) == 0)
 
                // Storing the maximum sum
                // in the max_sum variable
                max_sum = max(max_sum, a + b);
        }
    }
 
    // Return the max_sum value
    return max_sum;
}
 
// Driver code
int main()
{
    int N = 25;
    int max_sum = getLargestSum(N);
 
    cout << max_sum << endl;
    return 0;
}

Java




// Java implementation to find the largest value
// of a + b satisfying the given condition
 
class GFG{
 
// Function to return the maximum sum of
// a + b satisfying the given condition
static int getLargestSum(int N)
{
    // Initialize max_sum
    int max_sum = 0;
 
    // Consider all possible pairs and check
    // the sum divides product property
    for (int i = 1; i * i <= N; i++) {
         for (int j = i + 1; j * j <= N; j++) {
 
              // To find the largest factor k
              int k = N / j;
              int a = k * i;
              int b = k * j;
 
               // Check if the product is
               // divisible by the sum
               if (a <= N && b <= N &&
                   a * b % (a + b) == 0)
 
                   // Storing the maximum sum
                   // in the max_sum variable
                   max_sum = Math.max(max_sum, a + b);
        }
    }
 
    // Return the max_sum value
    return max_sum;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 25;
    int max_sum = getLargestSum(N);
    System.out.print(max_sum + "\n");
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation to find the largest value
# of a + b satisfying the given condition
 
# Function to return the maximum sum of
# a + b satisfying the given condition
def getLargestSum(N) :
 
    max_sum = 0; # Initialize max_sum
 
    # Consider all possible pairs and check
    # the sum divides product property
    for i in range(1, int(N ** (1/2))+1) :
        for j in range(i + 1, int(N ** (1/2)) + 1) :
             
            # To find the largest factor k
            k = N // j;
            a = k * i;
            b = k * j;
             
            # Check if the product is
            # divisible by the sum
            if (a <= N and b <= N and a * b % (a + b) == 0) :
                # Storing the maximum sum
                # in the max_sum variable
                max_sum = max(max_sum, a + b);
                 
    # Return the max_sum value
    return max_sum;
     
# Driver code
if __name__ == "__main__" :
    N = 25;
    max_sum = getLargestSum(N);
    print(max_sum);
 
# This code is contributed by AnkitRai01

C#




// C# implementation to find the largest value
// of a + b satisfying the given condition
using System;
 
class GFG{
 
// Function to return the maximum sum of
// a + b satisfying the given condition
static int getLargestSum(int N)
{
     
    // Initialize max_sum
    int max_sum = 0;
 
    // Consider all possible pairs and check
    // the sum divides product property
    for(int i = 1; i * i <= N; i++)
    {
       for(int j = i + 1; j * j <= N; j++)
       {
          // To find the largest factor k
          int k = N / j;
          int a = k * i;
          int b = k * j;
           
          // Check if the product is
          // divisible by the sum
          if (a <= N && b <= N &&
              a * b % (a + b) == 0)
               
              // Storing the maximum sum
              // in the max_sum variable
              max_sum = Math.Max(max_sum, a + b);
        }
    }
 
    // Return the max_sum value
    return max_sum;
}
 
// Driver code
static public void Main(String[] args)
{
    int N = 25;
    int max_sum = getLargestSum(N);
     
    Console.Write(max_sum + "\n");
}
}
 
// This code is contributed by gauravrajput1
Output: 
36

 

Time Complexity: Though there are two loops, each loop runs for at most sqrt(N) time. Therefore, the overall time complexity O(N).
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :