Find the maximum possible value of last element of the Array

Given a non-negative array arr of size N and an integer M representing the number of moves such that in one move, the value of any one element in the array decreases by one and the value of its adjacent element on right increases by one. The task is to find the maximum possible value of the last element of the array in given M number of moves.

Examples:

Input: arr[] = {2, 3, 0, 1}, M = 5
Output: 3
Move 1: Working on index 1, the element 3 at 1st index reduces to 2 and the element 0 at 2nd index increases to 1. Hence the resultant array after one move = {2, 2, 1, 1}
Move 2: Working on index 2, the element 1 at 2nd index reduces to 0 and the element 1 at 3rd index increases to 2. Hence the resultant array after two moves = {2, 2, 0, 2}
Move 3: Working on index 1, the element 2 at 1st index reduces to 1 and the element 0 at 2nd index increases to 1. Hence the resultant array after three moves {2, 1, 1, 2}
Move 4: Working on index 2, the element 1 at 2nd index reduces to 0 and the element 2 at 3rd index increases to 3. Hence the resultant array after four moves {2, 1, 0, 3}
Move 5: Working on index 1, the element 1 at 1st index reduces to 0 and the element 0 at 2nd index increases to 1. Hence the resultant after five moves {2, 0, 1, 3}
So the maximum value of last element after 5 moves is 3



Input: arr[] = {1, 100}, M = 2
Output: 101

Approach:
The number of moves required to move one value from one element to the last element is calculated by the distance between them. For each element in the array, if the distance between this element and the final element is less than equal to M, then this element can be moved to the last. So in order to move it, increase the last element with the distance and reduce the left number of moves with the distance.

Below is the implementation of the above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the maximum possible
// value of last element of the array
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the maximum possible
// value of last element of the array
int maxValue(int arr[], int n, int moves)
{
  
    // Traverse for all element
    for (int i = n - 2; i >= 0; i--) {
        if (arr[i] > 0) {
            // Find the distance
            int distance = n - 1 - i;
  
            // If moves less than distance then
            // we can not move this number to end
            if (moves < distance)
                break;
  
            // How many number we can move to end
            int can_take = moves / distance;
  
            // Take the minimum of both of them
            int take = min(arr[i], can_take);
  
            // Increment in the end
            arr[n - 1] += take;
  
            // Remove taken moves
            moves -= take * distance;
        }
    }
  
    // Return the last element
    return arr[n - 1];
}
  
// Driver code
int main()
{
    int arr[] = { 2, 3, 0, 1 };
    int M = 5;
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function call
    cout << maxValue(arr, N, M);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the maximum possible
// value of last element of the array
import java.util.*;
  
class GFG{
   
// Function to find the maximum possible
// value of last element of the array
static int maxValue(int arr[], int n, int moves)
{
   
    // Traverse for all element
    for (int i = n - 2; i >= 0; i--) {
        if (arr[i] > 0) {
            // Find the distance
            int distance = n - 1 - i;
   
            // If moves less than distance then
            // we can not move this number to end
            if (moves < distance)
                break;
   
            // How many number we can move to end
            int can_take = moves / distance;
   
            // Take the minimum of both of them
            int take = Math.min(arr[i], can_take);
   
            // Increment in the end
            arr[n - 1] += take;
   
            // Remove taken moves
            moves -= take * distance;
        }
    }
   
    // Return the last element
    return arr[n - 1];
}
   
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 3, 0, 1 };
    int M = 5;
    int N = arr.length;
   
    // Function call
    System.out.print(maxValue(arr, N, M)); 
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the maximum possible
# value of last element of the array
  
# Function to find the maximum possible
# value of last element of the array
def maxValue(arr, n, moves):
  
    # Traverse for all element
    for i in range(n - 2, -1, -1):
        if (arr[i] > 0):
              
            # Find the distance
            distance = n - 1 - i
  
            # If moves less than distance then
            # we can not move this number to end
            if (moves < distance):
                break
  
            # How many number we can move to end
            can_take = moves // distance
  
            # Take the minimum of both of them
            take = min(arr[i], can_take)
  
            # Increment in the end
            arr[n - 1] += take
  
            # Remove taken moves
            moves -= take * distance
  
    # Return the last element
    return arr[n - 1]
  
# Driver code
if __name__ == '__main__':
    arr= [2, 3, 0, 1]
    M = 5
    N = len(arr)
  
    # Function call
    print(maxValue(arr, N, M))
      
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the maximum possible
// value of last element of the array
using System;
  
class GFG{
    
// Function to find the maximum possible
// value of last element of the array
static int maxValue(int []arr, int n, int moves)
{
    
    // Traverse for all element
    for (int i = n - 2; i >= 0; i--) {
        if (arr[i] > 0) {
            // Find the distance
            int distance = n - 1 - i;
    
            // If moves less than distance then
            // we can not move this number to end
            if (moves < distance)
                break;
    
            // How many number we can move to end
            int can_take = moves / distance;
    
            // Take the minimum of both of them
            int take = Math.Min(arr[i], can_take);
    
            // Increment in the end
            arr[n - 1] += take;
    
            // Remove taken moves
            moves -= take * distance;
        }
    }
    
    // Return the last element
    return arr[n - 1];
}
    
// Driver code
public static void Main(String[] args)
{
    int []arr = { 2, 3, 0, 1 };
    int M = 5;
    int N = arr.Length;
    
    // Function call
    Console.Write(maxValue(arr, N, M)); 
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

3

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.