Find the maximum node at a given level in a binary tree

Given a Binary Tree and a Level. The task is to find the node with the maximum value at that given level.



The idea is to traverse the tree along depth recursively and return the nodes once the required level is reached and then return the maximum of left and right subtrees for each subsequent call. So that the last call will return the node with maximum value among all nodes at the given level.

Below is the step by step algorithm:

  1. Perform DFS traversal and every time decrease the value of level by 1 and keep traversing to the left and right subtrees recursively.
  2. When value of level becomes 0, it means we are on the given level, then return root->data.
  3. Find the maximum between the two values returned by left and right subtrees and return the maximum.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the node with
// maximum value at a given level
  
#include <iostream>
  
using namespace std;
  
// Tree node
struct Node {
    int data;
    struct Node *left, *right;
};
  
// Utility function to create a new Node
struct Node* newNode(int val)
{
    struct Node* temp = new Node;
    temp->left = NULL;
    temp->right = NULL;
    temp->data = val;
    return temp;
}
  
// function to find the maximum value
// at given level
int maxAtLevel(struct Node* root, int level)
{
    // If the tree is empty
    if (root == NULL)
        return 0;
  
    // if level becomes 0, it means we are on
    // any node at the given level
    if (level == 0)
        return root->data;
  
    int x = maxAtLevel(root->left, level - 1);
    int y = maxAtLevel(root->right, level - 1);
  
    // return maximum of two
    return max(x, y);
}
  
// Driver code
int main()
{
    // Creating the tree
    struct Node* root = NULL;
    root = newNode(45);
    root->left = newNode(46);
    root->left->left = newNode(18);
    root->left->left->left = newNode(16);
    root->left->left->right = newNode(23);
    root->left->right = newNode(17);
    root->left->right->left = newNode(24);
    root->left->right->right = newNode(21);
    root->right = newNode(15);
    root->right->left = newNode(22);
    root->right->left->left = newNode(37);
    root->right->left->right = newNode(41);
    root->right->right = newNode(19);
    root->right->right->left = newNode(49);
    root->right->right->right = newNode(29);
  
    int level = 3;
  
    cout << maxAtLevel(root, level);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the 
// node with maximum value 
// at a given level
import java.util.*;
class GFG
{
  
// Tree node
static class Node 
{
    int data;
    Node left, right;
}
  
// Utility function to
// create a new Node
static Node newNode(int val)
{
    Node temp = new Node();
    temp.left = null;
    temp.right = null;
    temp.data = val;
    return temp;
}
  
// function to find 
// the maximum value
// at given level
static int maxAtLevel(Node root, int level)
{
    // If the tree is empty
    if (root == null)
        return 0;
  
    // if level becomes 0, 
    // it means we are on
    // any node at the given level
    if (level == 0)
        return root.data;
  
    int x = maxAtLevel(root.left, level - 1);
    int y = maxAtLevel(root.right, level - 1);
  
    // return maximum of two
    return Math.max(x, y);
}
  
// Driver code
public static void main(String args[])
{
    // Creating the tree
    Node root = null;
    root = newNode(45);
    root.left = newNode(46);
    root.left.left = newNode(18);
    root.left.left.left = newNode(16);
    root.left.left.right = newNode(23);
    root.left.right = newNode(17);
    root.left.right.left = newNode(24);
    root.left.right.right = newNode(21);
    root.right = newNode(15);
    root.right.left = newNode(22);
    root.right.left.left = newNode(37);
    root.right.left.right = newNode(41);
    root.right.right = newNode(19);
    root.right.right.left = newNode(49);
    root.right.right.right = newNode(29);
  
    int level = 3;
  
    System.out.println(maxAtLevel(root, level));
}
}
  
// This code is contributed
// by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the node  
# with maximum value at a given level 
  
# Helper function that allocates a new 
# node with the given data and None 
# left and right poers.                                     
class newNode: 
  
    # Constructor to create a new node 
    def __init__(self, data): 
        self.data = data
        self.left = None
        self.right = None
  
# function to find the maximum  
# value at given level 
def maxAtLevel(root, level): 
  
    # If the tree is empty 
    if (root == None) :
        return 0
  
    # if level becomes 0, it means we 
    # are on any node at the given level 
    if (level == 0) :
        return root.data 
  
    x = maxAtLevel(root.left, level - 1
    y = maxAtLevel(root.right, level - 1
  
    # return maximum of two 
    return max(x, y)
      
# Driver Code 
if __name__ == '__main__':
  
    """ 
    Let us create Binary Tree shown
    in above example """
    root = newNode(45
    root.left = newNode(46
    root.left.left = newNode(18
    root.left.left.left = newNode(16
    root.left.left.right = newNode(23
    root.left.right = newNode(17
    root.left.right.left = newNode(24
    root.left.right.right = newNode(21
    root.right = newNode(15
    root.right.left = newNode(22
    root.right.left.left = newNode(37
    root.right.left.right = newNode(41
    root.right.right = newNode(19
    root.right.right.left = newNode(49
    root.right.right.right = newNode(29)
    level = 3
    print(maxAtLevel(root, level))
  
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the 
// node with maximum value 
// at a given level
using System;
  
class GFG
{
  
    // Tree node
    class Node 
    {
        public int data;
        public Node left, right;
    }
  
    // Utility function to
    // create a new Node
    static Node newNode(int val)
    {
        Node temp = new Node();
        temp.left = null;
        temp.right = null;
        temp.data = val;
        return temp;
    }
  
    // function to find 
    // the maximum value
    // at given level
    static int maxAtLevel(Node root, int level)
    {
        // If the tree is empty
        if (root == null)
            return 0;
  
        // if level becomes 0, 
        // it means we are on
        // any node at the given level
        if (level == 0)
            return root.data;
  
        int x = maxAtLevel(root.left, level - 1);
        int y = maxAtLevel(root.right, level - 1);
  
        // return maximum of two
        return Math.Max(x, y);
    }
  
    // Driver code
    public static void Main(String []args)
    {
        // Creating the tree
        Node root = null;
        root = newNode(45);
        root.left = newNode(46);
        root.left.left = newNode(18);
        root.left.left.left = newNode(16);
        root.left.left.right = newNode(23);
        root.left.right = newNode(17);
        root.left.right.left = newNode(24);
        root.left.right.right = newNode(21);
        root.right = newNode(15);
        root.right.left = newNode(22);
        root.right.left.left = newNode(37);
        root.right.left.right = newNode(41);
        root.right.right = newNode(19);
        root.right.right.left = newNode(49);
        root.right.right.right = newNode(29);
  
        int level = 3;
  
        Console.WriteLine(maxAtLevel(root, level));
    }
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

49


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.