Find the maximum elements in the first and the second halves of the Array

• Last Updated : 28 May, 2022

, Given an array arr[] of N integers. The task is to find the largest elements in the first half and the second half of the array. Note that if the size of the array is odd then the middle element will be included in both halves.
Examples:

Input: arr[] = {1, 12, 14, 5}
Output: 12, 14
First half is {1, 12} and the second half is {14, 5}.
Input: arr[] = {1, 2, 3, 4, 5}
Output: 3, 5

Approach: Calculate the middle index of the array as mid = N / 2. Now the first halve elements will be present in the subarray arr[0…mid-1] and arr[mid…N-1] if N is even
If N is odd then the halves are arr[0…mid] and arr[mid…N-1]
Below is the implementation of the above approach:

C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to print largest element in``// first half and second half of an array``void` `findMax(``int` `arr[], ``int` `n)``{` `    ``// To store the maximum element``    ``// in the first half``    ``int` `maxFirst = INT_MIN;` `    ``// Middle index of the array``    ``int` `mid = n / 2;` `    ``// Calculate the maximum element``    ``// in the first half``    ``for` `(``int` `i = 0; i < mid; i++)``        ``maxFirst = max(maxFirst, arr[i]);` `    ``// If the size of array is odd then``    ``// the middle element will be included``    ``// in both the halves``    ``if` `(n % 2 == 1)``        ``maxFirst = max(maxFirst, arr[mid]);` `    ``// To store the maximum element``    ``// in the second half``    ``int` `maxSecond = INT_MIN;` `    ``// Calculate the maximum element``    ``// int the second half``    ``for` `(``int` `i = mid; i < n; i++)``        ``maxSecond = max(maxSecond, arr[i]);` `    ``// Print the found maximums``    ``cout << maxFirst << ``", "` `<< maxSecond;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 12, 14, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``findMax(arr, n);` `    ``return` `0;``}`

Java

 `// Java implementation of the approach``import` `java.io.*;` `class` `GFG``{``    ``static` `void` `findMax(``int` `[]arr, ``int` `n)``    ``{``    ` `        ``// To store the maximum element``        ``// in the first half``        ``int` `maxFirst = Integer.MIN_VALUE;``    ` `        ``// Middle index of the array``        ``int` `mid = n / ``2``;``    ` `        ``// Calculate the maximum element``        ``// in the first half``        ``for` `(``int` `i = ``0``; i < mid; i++)``        ``{``            ``maxFirst = Math.max(maxFirst, arr[i]);``        ``}``    ` `        ``// If the size of array is odd then``        ``// the middle element will be included``        ``// in both the halves``        ``if` `(n % ``2` `== ``1``)``        ``{``            ``maxFirst = Math.max(maxFirst, arr[mid]);``        ``}``        ` `        ``// To store the maximum element``        ``// in the second half``        ``int` `maxSecond = Integer.MIN_VALUE;``    ` `        ``// Calculate the maximum element``        ``// int the second half``        ``for` `(``int` `i = mid; i < n; i++)``        ``{``            ``maxSecond = Math.max(maxSecond, arr[i]);``        ``}``        ` `        ``// Print the found maximums``        ``System.out.print(maxFirst + ``", "` `+ maxSecond);``        ``// cout << maxFirst << ", " << maxSecond;``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `[]arr = { ``1``, ``12``, ``14``, ``5` `};``        ``int` `n = arr.length;``    ` `        ``findMax(arr, n);``    ``}``}` `// This code is contributed by anuj_67..`

Python3

 `# Python3 implementation of the approach``import` `sys` `# Function to print largest element in``# first half and second half of an array``def` `findMax(arr, n) :` `    ``# To store the maximum element``    ``# in the first half``    ``maxFirst ``=` `-``sys.maxsize ``-` `1` `    ``# Middle index of the array``    ``mid ``=` `n ``/``/` `2``;` `    ``# Calculate the maximum element``    ``# in the first half``    ``for` `i ``in` `range``(``0``, mid):``        ``maxFirst ``=` `max``(maxFirst, arr[i])` `    ``# If the size of array is odd then``    ``# the middle element will be included``    ``# in both the halves``    ``if` `(n ``%` `2` `=``=` `1``):``        ``maxFirst ``=` `max``(maxFirst, arr[mid])` `    ``# To store the maximum element``    ``# in the second half``    ``maxSecond ``=` `-``sys.maxsize ``-` `1` `    ``# Calculate the maximum element``    ``# int the second half``    ``for` `i ``in` `range``(mid, n):``        ``maxSecond ``=` `max``(maxSecond, arr[i])` `    ``# Print the found maximums``    ``print``(maxFirst, ``","``, maxSecond)` `# Driver code``arr ``=` `[``1``, ``12``, ``14``, ``5` `]``n ``=` `len``(arr)` `findMax(arr, n)` `# This code is contributed by ihritik`

C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ``static` `void` `findMax(``int` `[]arr, ``int` `n)``    ``{``    ` `        ``// To store the maximum element``        ``// in the first half``        ``int` `maxFirst = ``int``.MinValue;``    ` `        ``// Middle index of the array``        ``int` `mid = n / 2;``    ` `        ``// Calculate the maximum element``        ``// in the first half``        ``for` `(``int` `i = 0; i < mid; i++)``        ``{``            ``maxFirst = Math.Max(maxFirst, arr[i]);``        ``}``    ` `        ``// If the size of array is odd then``        ``// the middle element will be included``        ``// in both the halves``        ``if` `(n % 2 == 1)``        ``{``            ``maxFirst = Math.Max(maxFirst, arr[mid]);``        ``}``        ` `        ``// To store the maximum element``        ``// in the second half``        ``int` `maxSecond = ``int``.MinValue;``    ` `        ``// Calculate the maximum element``        ``// int the second half``        ``for` `(``int` `i = mid; i < n; i++)``        ``{``            ``maxSecond = Math.Max(maxSecond, arr[i]);``        ``}``        ` `        ``// Print the found maximums``        ``Console.WriteLine(maxFirst + ``", "` `+ maxSecond);``        ``// cout << maxFirst << ", " << maxSecond;``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]arr = { 1, 12, 14, 5 };``        ``int` `n = arr.Length;``    ` `        ``findMax(arr, n);``    ``}``}` `// This code is contributed by nidhiva`

Javascript

 `// javascript implementation of the approach``    ``function` `findMax(arr, n)``    ``{``     ` `        ``// To store the maximum element``        ``// in the first half``        ` `        ``var` `maxFirst = Number.MIN_VALUE``     ` `        ``// Middle index of the array``        ``var` `mid = n / 2;``     ` `        ``// Calculate the maximum element``        ``// in the first half``        ``for` `(``var` `i = 0; i < mid; i++)``        ``{``            ``maxFirst = Math.max(maxFirst, arr[i]);``        ``}``     ` `        ``// If the size of array is odd then``        ``// the middle element will be included``        ``// in both the halves``        ``if` `(n % 2 == 1)``        ``{``            ``maxFirst = Math.max(maxFirst, arr[mid]);``        ``}``         ` `        ``// To store the maximum element``        ``// in the second half``        ``var` `maxSecond = Number.MIN_VALUE``     ` `        ``// Calculate the maximum element``        ``// int the second half``        ``for` `(``var` `i = mid; i < n; i++)``        ``{``            ``maxSecond = Math.max(maxSecond, arr[i]);``        ``}``         ` `        ``// Print the found maximums``        ``document.write(maxFirst + ``", "` `+ maxSecond);``    ``}``     ` `    ``// Driver Code``        ``var` `arr = [ 1, 12, 14, 5 ];``        ``var` `n = arr.length;``     ` `        ``findMax(arr, n);` ` ``// This code is contributed by bunnyram19.`

Output:

`12, 14`

Time Complexity: O(n), since the loop runs from 0 to (mid – 1), and then from mid to (n – 1).

Auxiliary Space: O(1), since no extra space has been taken.

My Personal Notes arrow_drop_up